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あらまし 本研究では，小型カメラを搭載した自転車によるユーザ参加型センシングで取得した路面画像を対象とし
て，物体検出モデル YOLO11を用いた点字ブロック検出を行う．オリジナル画像に加え，グレースケール変換，およ
び CLAHEによるコントラスト強調を施したデータセットを構築し，計 3種類の点字ブロック検出モデルを作成・評
価した．その結果，最大で Precisionが 0.828，mAP50 が 0.802となり，自転車走行中に撮影された画像に対しても高
い検出性能を示すことを確認した．さらに，検出結果に対して BBox統合手法である NMWおよびWBFを適用し，多
重検出の抑制ならびに 3モデルのアンサンブルによる検出性能の向上を図った．その結果，最大で Precisionが 0.894
（+ 8.0 %），mAP50 が 0.844（+ 5.2 %）となり，後処理による検出性能の向上を確認した．
キーワード 参加型センシング，自転車，点字ブロック，画像認識，都市環境
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Abstract This study investigates tactile paving detection in road surface images acquired via bicycle-based participatory
sensing using compact cameras and the YOLO11 object detection model. Three detection models were trained and evaluated
using the original images as well as datasets preprocessed with grayscale conversion and CLAHE-based contrast enhancement.
The proposed approach achieved a maximum Precision of 0.828 and an mAP50 of 0.802, demonstrating robust detection perfor-
mance for images captured during bicycle travel. Furthermore, applying Non-Maximum Weighted (NMW) and Weighted Boxes
Fusion (WBF) for three-model ensemble post-processing suppressed multiple detections and improved accuracy, resulting in
a maximum Precision of 0.894 (+ 8.0 %) and an mAP50 of 0.844 (+ 5.2 %).
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1. は じ め に
視覚障害者の安全かつ円滑な移動を支えるため，街中の様々

な場所に点字ブロックが敷設されている．令和 4 年度におけ
る日本の視覚障害者数は約 27 万 3 千人と報告されており [1]，
現代において点字ブロックは極めて重要なバリアフリー設備で
あるといえる．しかし，敷設されている点字ブロックには摩耗
や褪色等によって劣化したものも多く，これらは視覚障害者に
とって認識が困難であり，重大な危険を引き起こしかねない．

点字ブロックの利便性と安全性を確保するためには定期的な点
検と保守が必要不可欠であるが，総務省行政相談センターが公
表した「視覚障害者誘導用ブロック等の適切な設置および維持
管理について」[2]によると，341件もの不備が沖縄県内の一部
区間において報告されており，現場での維持管理の難しさが明
らかとなっている．不備が放置されている原因として，主流の
点検手法である徒歩による巡回点検では人的・時間的コストが
非常に高く，調査の頻度や範囲を十分に確保することが困難で
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図 1: 本研究の概要

あることが挙げられる．例えば，総務省関東管区行政評価局の
資料「視覚障害者誘導用ブロックの維持管理等に関する調査」[3]
によると，大宮・東京・横浜の各国道事務所では 1日から 2日
に 1回の頻度で歩行点検を行っているが，その調査範囲は総延
長約 164 kmのうち 1 kmと限定的である．また，年 1回や不定
期での点検にとどまっている地方公共団体も存在するため，全
国的な点字ブロックの維持管理体制には課題が残っている．
そこで著者らは，図 1に示すように，点検作業の効率化と人

的コストの削減に向け，小型カメラと GPSモジュールを搭載し
た自転車を用いたユーザ参加型センシングにより点字ブロック
の配置・劣化情報を収集する手法について研究している [4], [5]．
本稿では，自転車走行中に撮影した路面画像を用いて，物体検

出モデル YOLO11による点字ブロックの検出を行うとともに，
収集した画像に対してグレースケール変換や CLAHEを施した
データセットを構築し，前処理前後における検出性能の比較を
行った．また，BBoxの統合手法である NMW（Non-Maximum
Weighted）やWBF（Weighted Boxes Fusion）の複合適用を行い，
3モデルのアンサンブルによる検出性能の向上を図った．

2. 関 連 研 究
2. 1 都市環境におけるユーザ参加型センシング
ユーザ参加型センシングとは，市民が自身のスマートフォン

やセンシングデバイスを用いて都市環境データを収集・共有す
る手法である [6]．このユーザ参加型センシングを活用して都
市環境の状況を把握する取り組みは多岐にわたる．例えば，夜
間の歩行安全性評価を目的とした街灯情報の収集 [7]，IoTトン
グによるポイ捨てゴミの情報収集 [8]，都市環境における参加型
センシングを支援するプラットフォーム [9]などが挙げられる．
また，自転車や自動車に搭載したスマートフォンの GPSと慣性
センサを用いて段差や路面状態を計測する研究も進められてお
り，広範囲を移動するモビリティにセンサを搭載することで，
都市環境データの効率的な収集を実現している [10]～[13]．

2. 2 点字ブロックに関する情報収集と画像認識による検出
点字ブロックに関する情報収集や，画像認識による点字ブ

ロック検出に関して様々な方法が提案されている．Tokitaら [14]
は，深層学習セグメンテーションモデル DeepLabV3+ を用い
て線状・点状ブロックの 2 種類の点字ブロック領域を検出す
る手法を提案し，mIoUが 0.937 ± 0.005という非常に高い性能
を報告している．Chengyiら [15]は，物体検出モデル YOLOv7
にアテンション機構の CBAM（Convolutional Block Attention
Module）を導入することで，元のモデルと比較して検出精度

を約 4.1%向上させている．Takanoら [16]は，点字ブロックの
直線性および黄色という視覚的特徴に着目し，多目的遺伝的
最適化アルゴリズムの NSGA-II（Non-dominated Sorting Genetic
Algorithm II）を用いた手法を提案しており，障害物や照度変化
の大きい環境下でも高い検出精度を維持できることを示してい
る．若松ら [17]は，頭部装着型カメラ画像に対し，FCN（Fully
Convolutional Network）を用いて点字ブロック領域を抽出するこ
とで，再現率が 84%を超える安定した検出性能を示している．
Wangら [18]は，YOLOv8に Lightweight Shared Detail Enhanced
Oriented Bounding Box（LSDE-OBB）ヘッドを導入することで
認識精度を大きく損なうことなくパラメータ数を約 25 %削減
した，魚眼カメラ搭載 UAVによるリアルタイム点検手法を提
案している．

2. 3 これまでの取り組み
著者らはこれまでに，図 1に示す，小型カメラおよび GPSモ

ジュールを搭載した自転車を用いたユーザ参加型センシングに
より，点字ブロック画像および位置情報を効率的に収集し，物
体検出モデル YOLO11を用いて点字ブロックを検出する手法を
提案している [4], [5]．提案手法により，自転車走行中に生じる
ブラーや歪みを含む画像に対しても，mAP50 が 0.777の点字ブ
ロック検出性能を達成している．さらに，検出結果を入力とし
て，線状ブロックおよび点状ブロックの種別を分類するモデル
を CNNの ResNet18により構築し，macro-F1が 0.898という高
い分類性能を実現している．これにより，日常的な自転車移動
を活用して点字ブロックの配置情報を効率的に収集するシステ
ムを確立した．一方で，学習データの不足やモーションブラー
に起因する誤検出および多重検出などの課題が残っており，学
習データの拡充や後処理による誤検出抑制が必要である．

2. 4 本研究の位置付け
点字ブロック検出には様々な画像認識手法が提案されている

が，文献 [14]～[16]で用いられる学習画像はブレが少なく鮮明
であり，文献 [17]の歩行時撮影画像でもブレは比較的軽微であ
る．また，UAV を用いた手法 [18] は広範囲のリアルタイム点
検が可能だが，操作に専門性が求められるという課題がある．
これに対し，著者らは自転車を用いたユーザ参加型センシン

グによる簡便かつ効率的な点字ブロック検出手法を提案してき
たが，2. 3節に示したように，誤検出や多重検出といった課題が
残されている．そこで本稿では，自転車走行中に撮影された画
像を対象とした点字ブロック検出において，前処理の違いによ
る誤検出傾向の差異を分析し，複数モデルの出力特性を活用し
た後処理アンサンブル手法による検出性能向上の有効性を示す．
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自転車走行中の撮影画像 点字ブロックのアノテーション

図 2: 自転車走行中の撮影画像とアノテーション例

表 1: データセット構成

データセット種別 画像枚数 インスタンス数
線状ブロック 点状ブロック

学習用 441 1019 240
テスト用 334 453 74

オリジナル グレースケール CLAHE

図 3: 画像処理前後のデータセット

3. 点字ブロック検出手法と後処理アルゴリズム
本章では，物体検出モデル YOLO11 [19]を用いた点字ブロッ

ク検出手法と，その検出性能の向上手法について述べる．まず，
グレースケール変換および CLAHEによるコントラスト強調を
施したデータセットを構築し，3種類の点字ブロック検出モデ
ルを作成・評価する．続いて，検出結果に対して BBox統合手
法である NMWやWBFを適用し，3モデルのアンサンブルに
よる検出性能の向上を試みる．

3. 1 入力画像の前処理の違いによる検出性能の比較評価
まず，著者らの先行手法により，物体検出モデル YOLO11を

用いて点字ブロック検出モデルを構築する．自転車走行中に撮
影した画像とアノテーション例を図 2に，データセットの構成
を表 1に示す．なお，学習用データセット 441枚のうち 40枚
（約 10 %）は点字ブロックを含まない背景画像である．
このデータセットに加えて画像処理による前処理を施した

2種類のデータセットを作成し，3つの検出モデルを比較する．
1つ目はグレースケール変換を施したモデルで，点字ブロック
の色に依存しない学習を意図したものである．2つ目は CLAHE
（Contrast Limited Adaptive Histogram Equalization）によるコン
トラスト強調を施したモデルで，ブロックの輪郭や細部を強調
することを目的としている．画像処理前後の例を図 3に示す．
次に，作成した 3モデルに対して画像処理前後のテストデー

タを入力し，学習時の前処理（3種類）と推論時の前処理（3種
類）の組み合せの計 9通りについて検出性能評価を行った．評
価指標には，適合率（Precision），再現率（Recall），および平均
適合率（mAP50）を用いる．表 2に示す評価結果より，いずれ
のモデルも学習に施した画像処理と同じ前処理を推論時に行っ
た場合に mAP50 が最大となり，前処理の一貫性が検出性能向

オリジナル グレースケール CLAHE

(1)

(2)

(3)

(4)

(5)

(6)

図 4: 各モデルの検出結果例

上に寄与することが明らかとなった．また，3モデル間の比較
では，オリジナルモデルが最も高い検出性能を示したが，他 2
つのモデルについても mAP50 が 0.773，0.774と高い検出性能
を維持している．
各モデルの検出結果例を図 4に，モデルごとの系統別誤検出

数を表 3に示す．オリジナルモデルでは，アスファルト上の影
やレンガ模様が線状ブロックに類似した特徴を持つことが原因
と考えられる誤検出を起こす傾向が確認された．一方，グレー
スケールモデルではアスファルトに対する誤検出が，CLAHE
モデルではレンガ模様に対する誤検出がそれぞれ低減している．
グレースケールモデル特有の誤検出として，図 4 (3)のような白
線の誤検出が見られたが，これは色情報の消失により形状が点
字ブロックと誤認されたためと考えられる．また，図 4 (5) で
は 2つのモデルが多重検出を起こしているものの，CLAHEモ
デルは点状ブロックの検出において高い性能を示した．これは
コントラスト強調により点状ブロックの境界が強調され，識別
しやすくなったためと考えられる．ただし，図 4 (6) のように
他のモデルでは生じない誤検出が発生する場合もあり，輪郭強
調が逆効果となる例も確認された．以上より，各モデルには誤
検出の傾向に固有の特徴があり，3モデルの検出結果を組み合
わせることで，誤検出の低減が期待できることが示唆された．

— 3 —



表 2: 点字ブロック検出モデルの評価結果
モデルタイプ

オリジナルモデル グレースケールモデル CLAHE モデル
Precision Recall mAP50 Precision Recall mAP50 Precision Recall mAP50

テストデータ
タイプ

オリジナル 0.824 0.691 0.802 0.777 0.687 0.766 0.723 0.643 0.702
グレースケール 0.741 0.579 0.656 0.828 0.668 0.773 0.682 0.531 0.601

CLAHE 0.738 0.584 0.653 0.741 0.579 0.656 0.795 0.671 0.774

表 3: モデルごとの系統別誤検出数
アスファルト路面 白線 レンガ模様

オリジナルモデル 5 1 11
グレースケールモデル 1 4 10

CLAHE モデル 7 0 4

3. 2 BBox統合と 3モデルアンサンブルによる検出性能向上
前節で構築したモデルにより，最大 mAP50 が 0.802での点字

ブロック検出を達成したものの，多重検出や路面の誤検出等の
課題が残っている．そこで本節では，BBoxの統合アルゴリズ
ムを用いた多重検出抑制，および 3モデルアンサンブルによる
検出性能向上手法について述べる．

3. 2. 1 NMWの応用による多重検出除去
YOLO11では，検出結果に対して自動的に信頼度スコアフィ

ルタ（閾値：検証時 0.001，推論時 0.25）および NMS（Non-
Maximum Suppression）[20]（IoU閾値：0.7）が適用される．し
かし，点字ブロック検出タスクにおいては，BBoxが大きく重
なり合う状況は生じないため，閾値調整のみでは多重検出を
十分に抑制できない場合がある．そこで，多重検出の除去手法
として，BBox統合アルゴリズムである NMW（Non-Maximum
Weighted）[21]を用いた方法を提案する．

NMWは，重なり合う BBox集合から 1つの BBoxを生成す
るアルゴリズムであり，式 (1)のように IoUと信頼度スコアを
重みとする加重平均によって出力座標を算出する．そのため，
信頼度スコアの高い BBoxの特徴をより強く反映できる．ここ
で，式 (1)における 𝒃は BBox，𝑐 は信頼度スコア，𝑛は同一ク
ラスタ内の BBox数を表す．

𝒃𝒏𝒆𝒘 =

∑𝑛
𝑖=1 𝜔𝑖 𝒃𝒊∑𝑛
𝑖=1 𝜔𝑖

,

𝜔𝑖 = 𝑐𝑖 · IoU
(
𝒃𝒊 , 𝒃arg max𝑖 𝑐𝑖

)
𝑐𝑛𝑒𝑤 = 𝑐arg max𝑖 𝑐𝑖

(1)

多重検出が発生した画像に NMW を適用した結果を図 5 (b)
に示す．ここでは，信頼度スコアフィルタ閾値を 0.3，統合時
の IoU閾値を 0.4とした．結果を見ると，BBox数は減少した
ものの，統合後の BBox間に依然として重なりが残ることが確
認できる．
この問題を解決するため，BBox数が収束するまで NMWを

反復適用するアルゴリズム（以下，M-NMW: Multiplex NMW）
を作成した．適用結果を図 5 (c)に示す．このように，IoU閾
値を上回る BBox がなくなるまで反復することで，多重検出

(a) 検出結果 (b) NMW適用後 (c) M-NMW適用後

図 5: NMW，M-NMW の適用結果

を完全に抑制できている．元の検出精度には依存するものの，
M-NMWにより各点字ブロックを一意に検出可能となった．

3. 2. 2 WBFの応用による 3モデルアンサンブル
3. 1節では，構築した 3つの点字ブロック検出モデルの出力

傾向がそれぞれ異なることが確認された．したがって，複数モ
デルの出力を統合することで検出性能の向上が期待できる．本
節では，BBox統合アルゴリズムであるWBF（Weighted Boxes
Fusion）[22]を用いた 3モデルアンサンブル手法を提案する．

WBF は，NMW と同様に重なり合う BBox 集合から 1 つの
BBox を生成するが，式 (2) に示すように，信頼度スコアのみ
を重みとする加重平均によって座標を算出する点が異なる．ま
た，統合後の信頼度スコアはモデル数に基づいて計算されるた
め，アンサンブル推論に特化した手法といえる．ここで，式 (2)
における 𝑚 はモデル数である．

𝒃𝒏𝒆𝒘 =

∑𝑛
𝑖=1 𝑐𝑖 𝒃𝒊∑𝑛
𝑖=1 𝑐𝑖

,

𝑐𝑛𝑒𝑤 =
min(𝑚, 𝑛) ·∑𝑛

𝑖=1 𝑐𝑖

𝑚𝑛

(2)

3モデルの検出結果（M-NMW適用済み）にWBFを適用し
た例を図 6 (a)に示す．ここで，BBoxを統合する際の IoUの閾
値は 0.4としている．3モデルの結果が統合されている一方で，
統合後の BBoxの重なりが多く，いずれか 1モデルが誤検出し
た場合にアンサンブル結果がその影響を受けることが分かる．
この問題に対しては，WBF 適用後に 3. 2. 1 項で構築した

M-NMWを適用することで重なりを抑制できると考えられる．
また，誤検出の影響を低減するため，WBF で再計算される信
頼度スコアに対して閾値を設定し，低スコアの BBoxを削除す
る戦略が有効である．そこで，WBF 適用後に信頼度スコア閾
値 0.3のフィルタリングとM-NMWの適用を行うアルゴリズム
（以下，FF-WBF: Filtered and Fused WBF）を作成した．FF-WBF
の適用結果を図 6 (b)に示す．追加の後処理により，BBoxの重
なりを抑えるとともに誤検出の影響を軽減できている．
図 6 (1)に着目すると，グレースケールモデル以外はアスファ

ルト路面を誤検出しているが，各モデルの誤検出位置が異なる
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(c) LT-FF-WBF適用後(b) FF-WBF適用後(a) WBF適用後オリジナル グレースケール CLAHE

(1)

(2)

(3)

(4)

図 6: WBF，FF-WBF，LT-FF-WBF の適用結果

こと，およびグレースケールモデルが誤検出を起こしていな
いことにより，WBF 適用後の信頼度スコアが低くなり，フィ
ルタリングによって誤検出を削除できている．このことから，
FF-WBFには「誤検出を含まないモデルが存在し，かつ誤検出
のスコアが低い場合，アンサンブル結果への誤検出の影響を抑
制する」という特徴があるといえる．

FF-WBFにより 3モデルアンサンブルの誤検出抑制が可能と
なった一方で，図 6 (3) に示すように，正しい検出結果が削除
される場合がある．この例ではオリジナルモデルのみが正し
く検出しており，その結果を採用するのが最適である．そこ
で，FF-WBFの派生手法として，点字ブロック配置の直線性に
基づく LT-FF-WBF（Linearity-triggered FF-WBF）を提案する．
LT-FF-WBF では，検出結果が直線的である場合は信頼度が高
いと仮定し，最も性能の高いモデル（今回の場合は mAP50 が
最も高いオリジナルモデル）の出力を採用する．一方，直線性
が低い場合には FF-WBFを適用する．ただし，本手法は点字ブ
ロックの直線的配置に依存するため，点状ブロックなどの非線
形配置には適用できない．直線性は BBox重心の回帰直線に対
する RMSE（Root Squared Mean Error）として定量化し，閾値
を 100 とした．RMSE が 0（検出が 0～1 個）の場合は直線性
を判定できないため，FF-WBFを適用する．LT-FF-WBFの適用
例を図 6 (c)に示す．図 6 (3)では，FF-WBFが正しい検出を抑
制していたのに対し，LT-FF-WBFではオリジナルモデルの検出
結果を採用することで検出性能が向上している．一方，図 6 (4)
では断片的な誤検出が残り，FF-WBFの方が良好な結果となっ
ている．なお，このような誤検出は NMWやWBFでは抑制で
きず，別の後処理手法が必要である．このように，LT-FF-WBF
は性能が向上する場合と低下する場合が存在するため，定量的
な性能評価による FF-WBFとの比較検討が必要である．

3. 2. 3 後処理アルゴリズムの性能評価
最後に，3. 2. 1項，および 3. 2. 2項で提案した後処理アルゴリ

ズムについて定量的評価を行う．各モデルの学習時と同様の前
処理を施したテストデータを用い，3モデルに対して Precision，
Recall，およびmAP50を算出した評価結果を表 4に示す．なお，
WBF，FF-WBF，および LT-FF-WBF は 3 モデルを統合したア
ンサンブル手法であるため，これらの評価値は全モデルタイプ
で共通となる．
評価結果より，いずれの後処理アルゴリズムにおいてもmAP50

は元の検出結果と比較して向上しており，後処理による検出
性能の改善が定量的に確認できた．NMW と M-NMW を比較
すると，M-NMWの方が mAP50 はわずかに高いものの，その
差は 0.001と極めて小さい．これは，本稿で用いたテストデー
タにおいては NMWの段階で多重検出が概ね除去されており，
M-NMW との差がほとんど生じなかったためであると考えら
れる（総検出数は NMW で 465 件，M-NMW で 464 件であっ
た）．また，Recall，および mAP50 が最大となった後処理アル
ゴリズムはWBFであった一方，Precisionが最大となったのは
FF-WBFであった．FF-WBFはWBFと比較して Recallが低下
しているが，これは信頼度スコアフィルタ，およびM-NMWに
より BBoxが削除された結果，正解検出数も減少したためであ
ると考えられる．一方で，BBoxの削除により誤検出が抑制さ
れ，Precisionの向上につながったと考えられる．
以上より，本稿で構築した検出モデルにおいては，誤検出と

未検出のバランスを重視する場合にはWBFを，誤検出の抑制
を重視する場合には FF-WBFを選択することが適切である．本
研究のデータ収集手法である自転車を用いたユーザ参加型セン
シングはデータ収集効率が高く，未検出については次回以降の
データ収集による補完が期待できる．この点を踏まえると誤検
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表 4: 後処理アルゴリズムの評価結果（WBF，FF-WBF，LT-FF-WBF は全モデル共通）
後処理アルゴリズム

NMW M-NMW WBF FF-WBF LT-FF-WBF
Precision Recall mAP50 Precision Recall mAP50 Precision Recall mAP50 Precision Recall mAP50 Precision Recall mAP50

モ
デ
ル

タ
イ
プ オリジナル 0.823 0.721 0.808 0.824 0.721 0.809

0.844 0.750 0.844 0.894 0.708 0.825 0.868 0.712 0.817グレースケール 0.827 0.681 0.791 0.831 0.681 0.792
CLAHE 0.841 0.682 0.798 0.845 0.682 0.799

出の抑制を重視することが望ましく，本稿で構築した検出モデ
ルに適用する後処理アルゴリズムは FF-WBFが最適であると結
論付けられる．

4. お わ り に
本稿では，小型カメラを搭載した自転車によって収集した路

面画像を用い，物体検出モデル YOLO11 による点字ブロック
検出手法，および検出性能の向上手法を提案した．オリジナル
画像，グレースケール画像，および CLAHEによるコントラス
ト強調画像で検出モデルを構築した結果，最大で Precision が
0.828，mAP50 が 0.802 となり，高い点字ブロック検出性能を
確認した．さらに，NMWを応用した多重検出の除去，および
WBFを応用した 3モデルアンサンブルにより誤検出の抑制と
検出性能の向上を実現し，最大で Precisionが 0.894（+ 8.0 %），
mAP50 が 0.844（+ 5.2 %）となった．
一方で，NMWやWBFでは抑制不可能な誤検出が一部に残

存するという課題も明らかとなった．今後はこの課題を解決す
るため，学習データの更なる拡充を図るとともに，点字ブロッ
ク配置の直線性を利用した新たな後処理アルゴリズムの開発な
どに取り組む予定である．
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