
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

靴装着型センサデバイスを用いた競歩における反則判定手法の提案
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あらまし 陸上競技の一種である競歩競技は，世界陸上での日本人選手のメダル獲得などを契機に知名度が高まって
いる．一方で，競技のルールには特殊な反則が存在するが，詳細を理解している人は少ないのが現状である．そのた
め，競歩に関する知識のない人が指導者のいない状況下で競歩の能力を習得することは難しく，指導を適切に行える
人材もまた不足しているという課題がある．そこで本研究は競歩初心者が指導者不在でもフォームを習得できるよう
にする競歩指導システムの実現を目指し，靴に装着した測距センサと加速度・角速度センサにより，主要反則の一つ
であるロスオブコンタクト（LC）を自動判定するシステムを提案する．本稿では，通常時と LC時を判定する簡易モ
デルを構築・評価した．その結果，通常時と LC時を Precision 96%で判定できることを確認した．
キーワード 競歩，指導システム，反則判定，ウェアラブルセンシング，スポーツセンシング
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Abstract Race walking, a discipline of track and field athletics, has recently gained increased public attention following
Japanese athletes’ medal performances at the World Athletics Championships. However, the competition rules include unique
types of violations, and only a limited number of people have a detailed understanding of them. As a result, it is difficult for
individuals with no prior knowledge of race walking to acquire race walking skills without an instructor, and there is also a
shortage of personnel capable of providing appropriate instruction. In this study, we aim to develop a race walking coaching
support system that enables beginners to acquire proper walking form even in the absence of an instructor. We propose an
automatic violation detection system for loss of contact (LC), one of the major race walking violations, using a distance sensor
and acceleration and angular velocity sensors attached to shoes. In this paper, we construct and evaluate a simple model to
distinguish between normal walking and loss-of-contact conditions. Experimental results demonstrate that the proposed model
can classify normal walking and loss-of-contact motion with a precision of 96%.
Key words Race Walking, Coaching System, Violation Detection, Wearable Sensing, Sports Sensing

1. は じ め に
陸上競技の種目の一つである「競歩」は，オリンピックの種

目にも含まれており，日本人の選手が世界記録を更新するな
ど，注目が高まっているが，その一方で，そのルール・判定の
難しさから，審判の公平性が疑問視されていることや，審判・
指導を担える競歩関係者の不足などが課題となっている．競歩
に特有かつ重要なルールは，1)競技者のいずれかの足が地面に
ついていること，2)前脚が接地の瞬間から垂直の位置になるま
での間に膝が伸びていること，の 2つである．競技者はこれら

のルールを常時守りつつ，所定の距離を歩く必要がある．この
ルールが守られているかの判断は，基本的に審判の目視による
ものであるが，少ない場合だと 2km 区間に約 8 人しかいない
こともある（つまり，250mを一人で審判する必要がある）[1]．
さらに，20kmを歩く競歩競技では試合時間が 1時間を超える
こともあるため，審判が常時集中し続けることは至難の業であ
る．また，競技人口が少ないことに起因し，新しく競歩を始め
ようとする競歩初心者に対して，これらのルールを適切に指導
できる指導者が非常に限られているということも，競歩が抱え
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図 1: 研究の全体像

る課題といえる．
そこで本研究は，指導者不在環境における競歩初心者のフォー

ム習得支援を目的とする．本稿では第一段階として，靴装着型
センサにより主要反則の一つであるロスオブコンタクト（LC）
を判定する手法を提案する（図 1）．さらに，競歩動作中のセン
サデータを収集し，LCと関連すると考えられる特徴量を抽出
した上で，簡易な機械学習モデルを構築，交差検証により評価
した．評価の結果，LCの有無を Precision 96%で判定できるこ
とを確認した．

2. 競歩の基礎知識
競歩は “歩く速さ” を競う陸上競技の種目の一つである．こ

こでは，競歩のルールに関しての基礎知識について述べる [1]．
2. 1 競歩における主要反則
競歩は「歩く」という運動を対象とするため，以下に示すよ

うに他の陸上競技にはない 2つの特有なルールが存在する．

• ルール 1：競技者は両足が同時に地面から離れてはならな
い．競技中は，常時必ずどちらかの足が地面に接している
必要がある．両方の足が地面から離れた場合には，ロスオ
ブコンタクト（Loss of Contact: LC）という反則となる．

• ルール 2： 踏み出した足が地面と垂直になるまで膝が伸
びていなければならない．地面に足がついた瞬間から脚が
地面と垂直になる前に膝が曲がった場合には，ベントニー
（Knee Bent: KB）という反則となる．

2. 2 競歩の指導方法
競歩の指導方法には明確な統一基準は存在せず，指導者ごと

に異なるアプローチが採用されている．一般的には，競技者が
歩行を実演し，フォームに誤りがある場合はその場で修正を加
えるという手法が用いられる．また，「○○のように」など，日
常的な動作に例えて感覚的に理解させる表現を用いることも多
い．実践とフィードバックを繰り返す指導法においては，まず
低速での歩行を通して正しいフォームの習得を目指し，習熟度
に応じて徐々に速度を上げていくという段階的なトレーニング
が行われる．いずれの指導方法においても，初心者が短期間で
競歩のルールを理解し，正しいフォームを習得することは容易
ではなく，指導者にとっても大きな負担となる．

また，特に指導者がいない場合においては，歩行を行う様子
をカメラで録画し，練習直後に映像を確認する方法も存在する．
しかしながら，カメラによる記録（練習）と再生（確認）を交
互に行う必要があるため，リアルタイム性に欠けるという課題
がある．

3. 関 連 研 究
3. 1 競歩の反則判定に関する研究
競歩における反則判定に関する研究は多く取り組まれてお

り，慣性センサや靴型センサ，カメラを用いた方法が提案され
ている．
まず，慣性センサを用いる方法としては，Taborriらは，慣性セ

ンサを利用してKB・LC双方の反則の判定を試みている [2], [3]．
2019年の研究はセンサを腰・左右太もも・すね・足に装着した
場合，2023年の研究はセンサを両方の足の脛の 2箇所に弾性ス
トラップで固定した場合における反則判定，およびタブレット
への結果表示について提案されている．構築した機械学習モデ
ルにより，KB，LC，KB＆ LCの判定について 90%を超える
精度を実現している．
また，Caporasoらは，腰部に装着されたウェアラブルセンサ

の加速度データ用いて，競技者の動作を解析し，競歩反則の自
動判定手法を提案している [4]．このシステムでは単一の加速度
センサを用いてフォームをリアルタイムに評価し，適切な歩行
ができているかどうかを自動的に判定することが可能である．
通信範囲内で安定したデータ取得を実現するため，ウェアラブ
ルセンサのデータは競技者と並走する自転車に搭載されたモバ
イルデバイスで受信する必要がある．
次に，カメラや他のセンサと組み合わせる方法としては，Lee

らは，慣性センサとカメラを使用し，競歩中の反則判定を試み
た．腰付近の皮膚に直接貼り付けることで慣性センサ（取得周期
100Hz）を設置するとともに，カメラ（フレームレート 125Hz）
を併用した反則判定手法を実現している [5]．長友らは，両足の
付け根，膝，足首，靴底にマーカーを付けた状態でトレッドミ
ル（ランニングマシン）上を歩き，被験者の右側面から撮影し
た映像によってマーカを検出することで競歩の反則を判定する
手法を提案している [6]．この手法では，靴底のマーカーを用い
て LCを判定し，それぞれのマーカーの中心座標の検出で KB
を判定している．
最後に，競技用の「靴」に着目した研究も行われている．

Setyantoらは，中敷き型のセンサを用いて，走り幅跳び，競歩，
ランニングにおいて足裏のどの部分に負荷がかかっているのか
計測している [7]．

3. 2 競歩の熟練度に関する研究
Harrisonらは，競歩の初心者と経験者に歩く速さや反則発生

の頻度に違いがあるのか調べるために，競歩初心者 16人・競
歩経験者 18人の計 34人を実験対象として，データ収集を行っ
た [8]．骨盤の高さにタイミングゲート（陸上競技で使用する，
選手が通過した正確な時間を自動で計測する装置）を設置し参
加者の歩行速度を測定した．脚の長さが最大歩行速度に大いに
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影響すると考え，地面から参加者の腸骨稜（骨盤まで）の長さ
を計測し，歩行速度，ステップ周波数，ステップ長，接地時間，
および FT（飛行時間）を測定し比較したが，年齢，身長，体重
が結果に大きく影響することは無かったと報告されている．し
かし，実験の参加者の男女比や年齢，身長，体重は初心者と経
験者で異なっているため，結果の差が経験の有無に起因するも
のかは明らかとなっていない．

3. 3 本研究の立ち位置
先行研究では，慣性センサを用いる方法 [2]～[4]，カメラを

用いる方法 [5], [6]や，靴中敷き型センサを用いる方法 [7]が提
案されているが，以下のような課題がある．
慣性センサを用いる方法では，大腿部や腰など地肌に直接取

り付けるセンサが多く用いられている．センサを安定して取り
付けるためと考えられるが，手軽さが低くなることや，競技の
パフォーマンスへの影響の観点において課題が残る．
カメラを用いたセンシング手法には，いくつかの制約がある．

まず，撮影範囲が限定されるため，広範囲で継続的にデータを
収集し続けることが難しい．また，競技者同士が重なった場合
には正確な動作解析が困難となるため，背景に動く対象が映り
込まないよう配慮する必要がある．さらに，画像処理には時間
を要するため，リアルタイムでのデータ収集や反則判定には不
向きであると考えられる．
靴中敷き型センサを使用した場合，底圧や歩行周期を高精度

に計測可能な一方で，中敷きは競技者にとって衝撃吸収や足部
の安定性に関わる重要な要素であり，実際に競技用インソール
は個々の競技者がカスタマイズすることも多い．そのため，中
敷き型センサの使用が競技者の感覚やパフォーマンスに影響を
及ぼす可能性があり，慎重な検討が必要である．
これらを踏まえ本研究では，競技時の身体動作や感覚への影

響を最小限に抑えつつ，歩行中のセンシングを安定的に行うこ
とを重視し，靴装着型のデバイスを提案する．

4. 提 案 手 法
本研究では，指導者不在でも競歩初心者が競歩技術を習得で

きるようにするための「競歩練習支援システム」の実現を目指
している（図 1）．この実現に向け，本稿では簡単に装着できか
つ競技動作への影響が少ない「靴装着型デバイス」を提案する
とともに，デバイスで取得できるデータを用いた競歩の反則判
定モデルの構築を行う．

4. 1 靴装着型デバイス
靴の踵部分に取り付けられるセンサを用いて，競歩時の歩行

状態（特に LC）をセンシングするデバイスを設計・開発する．
システム構成を図 2に示す．踵部に装着するセンサにより，

加速度・角速度データ，踵から地面までの距離データを取得
する．加速度・角速度データの取得には，MetaMotionS（注1）を用
い，距離データの取得には，M5Stack用 ToF測距センサユニッ

（注1）：https://mbientlab.com/metamotions/
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図 2: システム構成

図 3: 靴装着型デバイスの外観

ト（VL53L1X）（注2）を用いた．測距センサは M5StickC Plus2（注3）

の Grove インタフェースを介してデータを取得する．図 3 に
示すように，センサケースはセンサ部が下向きになるよう設計
しており，これにより踵と地面との距離を安定して計測するこ
とができる．これらのセンサは両足の踵に装着することを想定
する．
データの収集に関しては，慣性センサからセンサデータを

リアルタイムに収集し，リアルタイムのセンサストリームを
MQTT経由で収集して CSV化するシステムを採用した（図 2）．
用いたデバイス（M5StickC Plus2）の性能上，センサデータは
約 25Hzで取得される．M5StickC Plus2はWiFiでMQTTサー
バに接続し，1件ごとにセンサ値をサーバに publishする．PC
側では，データを受信するたびに行を追加して CSV に書き込
む仕組みとした．
なお，センサケースは Autodesk Fusion 360 を用いて設計し

（図 4），上記で示した 3つのデバイスが一体化する構造になっ
ている．設計したセンサケースに設けた穴，および靴の紐通し
(アイレット)に紐を通して，靴紐と同様に結ぶことで，センサ
デバイスを靴の踵部分に固定できるようになっている．

5. 実 験 方 法
5. 1 被 験 者
被験者は競歩経験を有する著者 1名（女性，21歳）とした．

本研究では被験者間の比較を目的とせず，同一被験者内におけ
る動作データの差異に着目した解析を行った．

（注2）：https://docs.m5stack.com/en/unit/Unit-ToF4M
（注3）：https://www.switch-science.com/products/9350
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図 4: 作成したセンサ治具

図 5: 靴装着型センサデバイスを装着した様子

5. 2 実験環境および計測手順
モデル構築のためのデータ収集環境として，屋外のアスファ

ルト路面上に約 10 m の直線区間を設定した．被験者は設定し
た直線区間を往復し，複数試行分のデータを連続して取得した．
以降では，片道分のデータを 1試行（1データ）として取り扱
う．被験者は，各試行において以下の 2種類の歩行パターンの
いずれかを行うこととした．

• 通常：反則をしていない正しい競歩動作（図 6）
• LC：意図的に LCを発生させた競歩動作（図 7）

なお，データ収集時には，競歩動作の確認および後述するラ
ベル付けのため，iPhone を用いてスローモーション動画を撮
影した．撮影時には，映像内に現在時刻を表示した PC画面が
映るようにした．これにより，後に取得されるセンサデータの
CSVファイルと映像の時刻同期を行う．

5. 3 センサデータの取得
全試行の終了後，MetaMotionおよびM5StickC Plus2からデー

タを出力し，加速度，角速度，および距離情報を含む複数の CSV
ファイルを右足分・左足分それぞれ取得した．これらの CSV
ファイルは，それぞれ異なる計測項目に対応しているため，各
ファイルに記録された時刻情報を基に統合した．
その後，取得した CSV データを可視化したグラフを確認し

ながら，1試行（片道分）ごとに分割した．各試行データの長
さは 5秒程度である．

図 6: 通常時の足の接地状態

図 7: LC 時の足の接地状態

5. 4 データ分割および学習用データ生成
各試行ごとに分割された CSVデータに対し，スライディング

ウィンドウ法を用いた分割を行った．本研究では，ウィンドウ
幅を 2秒，シフト幅を 1秒と設定し，1試行（約 5秒）のデー
タから複数の部分データを生成した．これにより，1試行あた
り 3～4個程度の入力データが得られた．

6. モデル構築および性能評価
6. 1 特徴量抽出
特徴量抽出には特徴量抽出ライブラリである tsfresh（注4）を用

いた．スライドウィンドウによって分割した各時系列データを
入力とし，加速度・角速度・距離データそれぞれに対して時間
領域・周波数領域の特徴量を自動抽出した．なお，特徴量の抽
出にあたってのパラメータとしては，全特徴量のうち大きな
計算コストが掛かるものを除外した特徴量のみを対象とする
EfficientFCParametersを設定し，加えて全サンプルが同じ
値（0や NaN）となる特徴量をフィルタリングした．

6. 2 モデル構築
抽出した特徴量を用いて，LCの発生有無を判定するための

機械学習モデルを構築した．本研究では比較的単純な教師あり
学習手法の LightGBMを用いた．被験者 1名であり，データ数
が限られることから，少ないデータでも全データを評価に使え
る点を重視し，モデルの学習および評価には，1試行を単位と
した層化 leave-one-trial-out交差検証を用いた（評価は試行単位
で分割し，同一試行内で生成された部分データが学習・テスト
に跨らないようにした）．具体的には，通常データ集合および
LCデータ集合からそれぞれ 1試行ずつをテストデータとして
抽出し，残りのデータを学習データとしてモデルを学習した．

（注4）：https://tsfresh.com/
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図 8: LC 判定モデルの評価結果
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図 9: 特徴量の重要度分析結果

6. 3 評 価 結 果
本実験では，通常時，LC時ともに 19試行分のデータを取得

した．このデータを用いて LC判定モデルを構築，層化 leave-
one-trial-out交差検証によって評価した結果，Precision，Recall，
F1-scoreはいずれも 96%となった．混同行列を図 8に示す．こ
のことから，LCの有無を一定の精度で判定可能であることを
確認した．

6. 4 特徴量の重要度分析
判定に寄与した特徴量を確認するため，LC判定モデルにお

ける特徴量の重要度を算出した．
図 9より，X軸角速度（x-axis deg-s），Y軸加速度（y-axis g）

に関する特徴量が判定に寄与する傾向が見られる．なお，X軸
および Y軸は，センサデバイスに固定されたローカル座標系に
基づくものである．今回の座標系において，X軸角速度は，足
部の爪先から踵を結ぶ長軸を中心とした回旋運動を反映する指
標である．図 10，図 11 から，LC 時にはこの値の極大値が低
下していることが確認された．また，Y軸加速度は，足部の左
右方向（内外側方向）への動きを反映する指標である．図 12，
図 13から，LC時にはこの値の振幅が不安定になることが確認
された．以上から，競歩に特有な足の動きに注目することで，
競歩における反則判定の性能を向上できる可能性が示唆された．

6. 5 考 察
靴装着型センサを用いて競歩における LCの有無を判定する

方法は，一定の判定性能を示すことを確認した．ここでは，そ
れらの理由や残された課題について議論する．
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図 10: 角速度データの例（LC 時）
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図 11: 角速度データの例（通常時）

競歩競技では，ルールを満たす歩行を維持するために，下肢
および骨盤の回旋運動や左右方向の動きが顕著となる特徴があ
る．特に，LCが発生した場合，これらの動きが不安定となり，
踏み込み動作が浅くなることで，足部の回旋運動を反映する X
軸角速度の極大値が低下し，Y軸加速度にも変動が生じると考
えられる．これらの変化が，判定に寄与した可能性があると考
えられる．
一方で，本研究にはいくつかの課題が存在する．まず，被験

者が 1名であるため，得られた結果は個人内評価に留まってお
り，他者への一般化については検討できていない．また，デー
タ数は限定的であり，歩行環境や速度の違いによる影響につい
ては十分に考慮できていない．
次に，取得した距離データを確認した結果，大幅な欠損が確

認された．この欠損により，本来 LCの有無として特徴量とし
て反映されるべき情報が十分に得られず，意図しない特徴量が
抽出された可能性がある．その結果，分類性能の低下や，判定
の妨げとなった可能性が考えられる．
今後は，被験者数およびデータ数を増加させ，初心者や競技

レベルの異なる歩行者を対象とした評価を行う必要がある．ま
た，距離データにおける大幅な欠損の原因を明らかにすると共
に，判定において距離データが有効な情報であるかについて，ま
た，特徴量の重要度が低かったデータの有効性についても，十
分な検討を行う必要がある．本研究で得られた知見を基に，リ
アルタイムでの LC判定や初心者指導への応用を検討していく．
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図 12: 加速度データの例（LC 時）
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図 13: 加速度データの例（通常時）

7. お わ り に
本研究では，競歩に関する知識や技術を持たない初心者が，指

導者不在の環境においても，自律的にルールや技術を習得可能
とするシステムの構築を目指し，靴装着型デバイスによるセン
シング手法を提案し，プロトタイプを用いたデータ収集を行っ
た．また，実現可能性を検討するために，収集したデータを元
に特徴量の抽出を行い，LCを判定する簡易モデルを作成した．
靴に装着した時系列データに対して，特徴量抽出および機

械学習を適用した結果，ロスオブコンタクト（LC）の有無を
Precision 96%で判定可能であることを確認した．
今後は，被験者数およびデータ数を増加させ，実環境での有

効性検証を進めていく．また，本手法の KB判定への拡張に加
え，リアルタイムフィードバックや初心者被験者を対象とした
評価にも取り組む予定である．
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