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Abstract
This study proposes a method for collecting tactile paving location
information by acquiring road surface images and GPS data using
a bicycle equipped with a compact camera and a GPS module. As a
preliminary experiment, road surface images were captured under
different camera positions and angles to identify optimal installation
conditions. An object detection model based on YOLO11 achieved
tactile paving detection with a mAP50 of 0.777. Subsequently, a
Convolutional Neural Network (CNN) based on ResNet18 classified
tactile paving types (guiding or warning) with a macro-F1 score
of 0.898. These results demonstrate the feasibility of the approach
while highlighting challenges such as model optimization for cam-
era placement and expanding training data.

CCS Concepts
• Information systems → Mobile information processing
systems; Location based services; •Computer vision→Object
detection; • Networks→ Sensor networks; • Applied computing
→ Digital government.
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1 Introduction
The population of visually impaired individuals in Japan was re-
ported to be approximately 273,000 as of fiscal year 2022 [5]. Tactile
paving plays a crucial role as a barrier-free facility supporting the
safe and smooth mobility of visually impaired individuals. However,
many installed tactile paving systems have deteriorated over time
due to wear, fading, and other factors. Such deteriorated blocks
are difficult for visually impaired individuals to recognize and can
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pose serious safety hazards. The report of the Administrative Coun-
seling Center, Ministry of Internal Affairs and Communications,
titled “Appropriate Installation and Maintenance of Tactile Paving
and Related Facilities for the Visually Impaired” [7], pointed out as
many as 341 deficiencies in certain sections of Okinawa Prefecture,
highlighting the challenges of on-site maintenance. Therefore, reg-
ular inspection and maintenance are indispensable to ensure both
the safety and usability of tactile paving.

The inspections of tactile paving are primarily conducted through
foot patrols, bicycle patrols, or vehicle patrols. This approach incurs
high human and time costs, making it difficult to achieve suffi-
cient inspection frequency and coverage. According to the report
published by Kanto Regional Administrative Evaluation Bureau,
Ministry of Internal Affairs and Communications, “Survey on the
Maintenance and Management of Tactile Paving for the Visually
Impaired” [6], the national highway offices in Omiya, Tokyo, and
Yokohama conduct walking inspections once every one to two days,
but the surveyed sections are limited to only 1 km for each day.
Furthermore, some local governments conduct inspections only
once a year or on an irregular basis, indicating persistent challenges
in establishing a nationwide maintenance system for tactile paving.
From these backgrounds, the automatic and periodic acquisition of
information on the placement and deterioration of tactile paving
could streamline inspection work and substantially reduce labor
costs.

In this study, we aim to realize a system that collects road surface
images while riding a bicycle through participatory sensing and
visualizes the placement and deterioration of tactile paving on a
map. In the future, we envision expanding this system to support a
wide range of mobility aids, such as wheelchairs, strollers, andwhite
canes, thereby realizing a more efficient information collection
framework.

Specifically, this paper investigates a method for acquiring road
surface images and location information while riding a bicycle
equipped with a compact camera and a GPS module, followed by
detecting tactile paving using an object detection model and clas-
sifying block types using a CNN. The overview of the proposed
research is shown in Figure 1.

2 Related Works
This section reviews prior studies on user-participatory sensing in
urban environments, open data initiatives for tactile paving, and
tactile paving detection using image recognition. We then position
the present study within this context.
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Tactile Paving Inspection: Human and time cost are significant...
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Figure 1: Contents of this paper

Research on using participatory sensing to understand urban
conditions spans various domains. Examples include collecting
streetlight information to evaluate nighttime road safety [3], gath-
ering litter data [10], and developing platforms to enable such sens-
ing [4]. Additionally, participatory sensing has been applied to
detect road surface irregularities and quality using the GPS and
inertial sensors of smartphones mounted on bicycles or cars. At-
taching sensors to highly mobile carriers allows for more efficient,
large-scale collection of urban environmental data [8, 11, 16, 17].

Moreover, Tanaka [13] developed a web system using participa-
tory GIS to centrally manage information on the installation status,
condition, and managing organizations of tactile paving. However,
data collection still relies on manual pedestrian surveys and reg-
istration. Consequently, the limited survey scope and frequency
hinder large-scale and regular information updates.

Various studies focus on detecting tactile paving using image
recognition [9, 12, 14, 15]. Chengyi et al. [9] improved the detection
accuracy of the YOLOv7 object detection model by approximately
4.1% by integrating the CBAM (Convolutional Block Attention
Module) attention mechanism. Takano et al. [12] proposed a de-
tection method using the multi-objective genetic optimization al-
gorithm NSGA-II (Non-dominated Sorting Genetic Algorithm II),
which focuses on the linearity and yellow color of tactile paving.
This successfully maintained high detection accuracy even with
obstacles or significant illumination changes. Wakamatsu et al. [14]
proposed extracting the regions of guiding and warning blocks from
head-mounted wearable camera images using an FCN (Fully Con-
volutional Network). This method achieved a recall rate exceeding
84% and demonstrated stable detection from a walking viewpoint.
Wang et al. [15] proposed a real-time inspection method using UAVs
equipped with fisheye cameras. By introducing the Lightweight
Shared Detail Enhanced Oriented Bounding Box (LSDE-OBB) head
into YOLOv8, they reduced parameters by approximately 25% with-
out significantly compromising recognition accuracy.

TimerCamera-X  API 

① Request Location ③ Send Image & Location

② Send Location

M5StickC + GPS Module

+

Figure 2: Overview of the Sensing System

While various image recognition methods exist for tactile paving
detection, the training images used in references [9, 12] are ideal,
featuring minimal blur and clear blocks. Conversely, images cap-
tured during cycling often suffer from motion blur and distortion
due to higher speeds, raising concerns about reduced detection
accuracy with existing methods. Furthermore, although [15] en-
ables real-time, wide-area inspection, it requires specialized UAV
operation skills. Therefore, this research aims to construct a system
that can stably detect tactile paving even under low image quality
conditions, utilizing easily accessible bicycles.

3 Proposed Method
We propose a participatory sensing system for acquiring the place-
ment of tactile paving while cycling. In the following sections, we
describe each step in detail.

Step 1: Constructing the Sensing System
First, we build a sensing system to collect tactile paving location
data. An overview of the system is shown in Figure 2. The system
operates by capturing an image, acquiring the corresponding posi-
tion data from a GPS module, and sending both to an API. The next
image capture is initiated immediately upon receiving a response
from the API. The API is implemented using Flask1, a lightweight
Python web application framework.

The prototype uses M5Stack-manufactured devices. The camera
is a TimerCamera-X2, and the GPS module is the M5Stack GPS
Unit v1.13, connected via Grove to an M5StickC4. As illustrated
in Figure 2, for device coordination, the TimerCamera-X sends
location requests to the M5StickC. The M5StickC retrieves data
from the GPS module and returns it to the TimerCamera-X for
integration.

Step 2: Capturing Road Surface Images via Bicycle
To capture road surface images along with location data, a compact
camera and a GPS module are mounted on a bicycle. Because bi-
cycles come in various frame types, such as cross bikes or utility
bikes, it is preferable to choose a mounting location that is common
to all frame types and does not interfere with riding. Furthermore,
since bicycles generally travel on the left side of the road in Japan,
the camera is intended to be mounted on the left side of the bicycle.

1https://flask.palletsprojects.com/
2https://docs.m5stack.com/en/unit/timercam_x
3https://docs.m5stack.com/en/unit/unit-gps%20v1.1
4https://docs.m5stack.com/en/core/m5stickc
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Figure 3: Example of annotation

Once powered on, the system automatically acquires road sur-
face images and corresponding location data while the user rides
normally.

Step 3: Detecting Tactile Paving Using YOLO11
Next, an object detection model is trained using the road surface
images collected in Step 2. This paper employs YOLO11 [1] as the
object detection model.

For training, images containing tactile paving are selected, and
bounding boxes are annotated around each block. This annotation
task performed by author (1 person). Images captured during cy-
cling may exhibit motion blur or distortion. In such cases, enclosing
the entire tactile paving within a bounding box may include exces-
sive background, which can degrade detection accuracy by causing
the model to learn irrelevant features. Therefore, bounding boxes
are positioned to include the tactile paving area as centrally as
possible. Additionally, images with severe motion blur where tac-
tile paving boundaries are unclear are excluded from the training
dataset. For tactile paving inspection, detected blocks should be
sufficiently contained within the image. Since regular photography
allows multiple recordings of the same location, it is unnecessary
to force detection of blocks that are not fully visible. Therefore, we
annotated tactile paving that is visible at least 70% of the total. For
example, in Figure 3, tactile paving is annotated with red rectan-
gles. However, the paving at the far right edge of the image is only
partially visible and is therefore not annotated.

Moreover, this study uses images captured from multiple camera
positions for training, aiming to develop a general-purpose model
that is independent of camera installation position.

Step 4: Classifying Block Types Using a ResNet18
Finally, a model is constructed to classify the type of tactile paving
detected in Step 3. This paper employs ResNet18 as the CNN.

The training and test datasets are constructed by cropping anno-
tated regions from the images used for the object detection model.
Furthermore, to improve classification performance with a small
dataset and to reduce training time, transfer learning is applied
using a pre-trained model.

Hirafuku

Okayama Univ.

N

Okayama Sta.City Hall

Figure 4: Survey area (shown as red lines)

(a) Cracking (b) Peeling (c) Fading

Figure 5: Degraded tactile paving

4 Experiments and Evaluation
This section describes four preliminary experiments based on the
proposed method presented in Section 3.

4.1 Preliminary Survey of Tactile Paving
Installation Conditions

This section describes a survey conducted in Okayama City to
investigate the installation and deterioration status of tactile paving,
as well as the feasibility of capturing images of tactile paving from
a bicycle.

4.1.1 Survey Overview. This survey targeted an approximately
11.8 km route from Minami Ward in Okayama City to Okayama
University, as shown in Figure 4. It was conducted on foot, the
mainstream method for such field surveys. The installation and
deterioration status of tactile paving were recorded using the par-
ticipatory location-based photo collection platform,“Repot” [2]. For
assessing the feasibility of photographing tactile paving from a
bicycle, the survey assumed cycling on the roadway-adjacent side
of sidewalks where bicycle passage is currently permitted. This
assumption accounts for the amendment to the Road Traffic Act of
Japan scheduled for April 2026, which will restrict bicycle access to
sidewalks.

4.1.2 Survey Results. Of the approximately 11.7 km surveyed route,
tactile paving was installed along about 8.0 km. Of this installed
length, approximately 6.9 kmwas accessible for image capturewhile
cycling. Furthermore, numerous instances of deterioration, such as
damage and fading, were observed. Examples are shown in Figure 5.

The pedestrian survey required approximately six hours to com-
plete. Considering that actual maintenance and inspection tasks
necessitate recording detailed information on installation and dam-
age, these results highlight the considerable time and human costs
associated with tactile paving upkeep.

4.2 Data Collection
This section describes a road surface photography experiment using
a bicycle equipped with a compact camera.

80



ICDCN Companion 2026, January 06–09, 2026, Nara, Japan Yuto Matsuda and Yuki Matsuda

1 4

2
3

5

(a) camera installation location

(b) shooting range for each location

Figure 6: (a) Camera installation locations (1: Under front bas-
ket, 2: Under handle bar/top tube, 3: Under handle bar/down
tube, 4: Rear wheel/seat stay, 5: Rear wheel/chain stay), and
(b) their shooting ranges

Table 1: Camera angle settings by camera installation

Installation Location Camera Angle
1: Under front basket Directly below
2: Under handle bar/top tube Diagonally forward
3: Under handle bar/down tube Diagonally sideways
4: Rear wheel/seat stay Front
5: Rear wheel/chain stay Side

4.2.1 Camera Settings Using Arduino. TheTimerCamera-X2 used in
this experiment can be configured for resolution and image quality
via Arduino. Resolution options include XGA, SXGA, and QXGA,
while image quality can be specified as an integer from 0 to 63, with
lower values corresponding to higher quality. These settings were
investigated under outdoor conditions simulating actual operation
to determine a combination that allows stable image capture and
transmission.

The investigation revealed that when the image file size exceeded
approximately 300 kB, the camera’s memory could potentially over-
flow. Therefore, the most suitable settings for clear and stable imag-
ing were found to be: resolution SXGA (1280×1024) and image
quality 30.

4.2.2 Adjusting Camera Placement and Angle. To investigate opti-
mal device placement and camera angles for detecting tactile paving,

Table 2: Breakdown of dataset capture locations

Installation
Location

Number of
Training Data

Number of
Test Data

1 54 77
2 123 83
3 0 87
4 174 87
5 50 0

cameras were installed at five locations shown in Figure 6 (a) to
capture road surface images. For this experiment, a standard utility
bicycle was used, and camera angles were adjusted for locations
2 to 5 as shown in Figure 6 (b). A shallow camera angle (close to
horizontal) allows for a wider field of view, but tends to produce
unclear images of tactile paving and raises privacy concerns due to
the inclusion of pedestrians, houses, and other objects. In contrast,
a steep camera angle (close to vertical) limits the area captured but
is expected to capture each tactile paving more clearly.

Table 1 summarizes the camera angle settings for each installa-
tion location, and Figure 7 shows examples of road surface images
captured under those settings. For installation location 1, image
capture was only possible when the bicycle had a basket and was
sufficiently close to tactile paving. Nevertheless, compared to other
locations, this setting produced the clearest images of tactile paving.
At installation location 4, depending on the timing of capture, the
user’s feet occasionally appeared in the image, potentially hinder-
ing image collection. At installation location 5, the proximity of the
camera to the ground tended to cause significant motion blur. From
these observations, it was determined that installation locations 1,
2, and 3 provided camera settings with minimal motion blur and
fewer obstructions in the images.

4.3 Tactile Paving Detection Using YOLO11
This section describes the detection method for tactile paving using
the object detection model YOLO11 and its evaluation, utilizing the
images collected in Section 4.2.

4.3.1 Model Training and Evaluation. First, following the method
proposed in Section 3, we annotated the training data. A training
dataset consisting of 320 images for training and 81 images for
validation (a total of 401 images) was created. Using this dataset,
we trained the lightest YOLO11 model, yolo11n.pt, for 50 epochs.
After training, to evaluate the model’s performance, we collected
and annotated 334 new road surface images to create a test dataset.
Since the dataset was created in chronological order of capture
dates, the number of images per camera location is uneven. The
breakdown is shown in Table 2.

We evaluated the model using the entire test dataset as well as for
each camera installation location. The results are summarized in Ta-
ble 3. The evaluation metrics used were Precision, Recall, and Mean
Average Precision (mAP50). Looking at the results, the average
mAP50 across the entire test dataset was 0.777, while some individ-
ual installation locations achieved higher values. This suggests that
constructing separate models for each installation location could
simplify the detection task and potentially improve performance.
Further investigation is required to validate this hypothesis.
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Location 1 Location 2 Location 3 Location 4 Location 5

Figure 7: Road surface images during bicycle travel

Table 3: Evaluation of tactile paving detection

Evaluation Metrics Overall Installation Location
1 2 3 4

Precision 0.856 0.713 0.776 0.940 0.879
Recall 0.668 0.742 0.789 0.595 0.729
mAP50 0.777 0.780 0.824 0.711 0.806

(a) Correct Detection (b) False Detection (c) Merged Detection

Figure 8: Example detection results

4.3.2 Discussion. Figure 8 shows examples of detection results
obtained using the aforementioned model on the test dataset.

In the example of Figure 8 (a), even in images with some motion
blur, each tactile paving was detected individually. In contrast, in
the example in Figure 8 (b), the asphalt pavement was misdetected.
This is thought to be because shadows and patterns on the pave-
ment formed features similar to those of the guiding blocks. To
suppress such misdetections, adding background images without
tactile paving to the training data is considered effective.

Finally, in the example of Figure 8 (c), two different types of
tactile paving are being detected as identical. This is likely due
to either a small amount of training data for warning blocks or
insufficient training data for situations where different types of
tactile paving appear side by side. As an improvement, increasing
the amount of training data that includes warning blocks in diverse
situations could be considered.

4.4 Block Types Classification Using ResNet18
This section describes and evaluates a ResNet18-based classifica-
tion method for tactile paving types, using the blocks detected in
Section 4.3 as input.

4.4.1 Model Training and Evaluation. First, following the method-
ology proposed in Section 3, we constructed the training and test
datasets by cropping the annotated regions from 735 images. The
breakdown of guiding and warning blocks within each dataset is
shown in Table 4.

Next, we performed transfer learning on a pre-trained ResNet18
model using the training dataset, setting the parameters to 10

Table 4: Breakdown of block types in the dataset

Block Type Training Data Test Data
Guiding Block 453 1019
Warning Block 74 240

Figure 9: Loss curve

epochs and a batch size of 32. We used Cross-entropy loss as the
loss function and Adam as the optimizer. The loss curve obtained
during training is shown in Figure 9. The persistent gap between
the train loss and the validation loss suggests signs of overfitting.

Finally, we evaluated the model. Since the test data exhibits sig-
nificant class imbalance, we balanced the number of test cases per
class by randomly selecting 74 guiding block test cases (equal to
the number of warning blocks). Evaluation metrics included Pre-
cision, Recall, and F1-Score. Considering the training data bias,
we also used macro-averaged-Recall and macro-F1, prioritizing
the latter due to its balanced consideration of Precision, Recall,
and dataset imbalance. The evaluation results are presented in Ta-
ble 5, with classification examples shown in Figure 10. The results
show a macro-F1 of 0.892, with high scores also recorded for other
metrics. Despite the signs of overfitting, the improved classifica-
tion performance likely stems from the input data being small,
cropped sections of tactile paving rather than the entire image,
resulting in minimal feature differences between the training and
test sets. Examining the classification examples in Figure 10: (a)
shows successful classification even when guiding and warning
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Table 5: Evaluation of tactile paving classification

Evaluation Metrics Score
Precision 0.824
Recall 0.975
F1 0.881

macro-averaged-Recall 0.872
macro-F1 0.871

(a) Correct Classification (b) False Classification

Figure 10: Example classification results

Table 6: Evaluation results by dropout rate

Evaluation Metrics Dropout Rate
0.3 0.4 0.5 0.6

Precision 0.779 0.777 0.847 0.802
Recall 1.000 0.987 0.973 0.987
F1 0.876 0.869 0.906 0.885

macro-averaged-Recall 0.858 0.851 0.899 0.872
macro-F1 0.855 0.849 0.898 0.870

blocks are mixed. Conversely, (b) shows the misclassification of
warning blocks as guiding blocks, which we attribute to the limited
amount of training data for warning blocks. Furthermore, detection
errors that cause blocks from different classes to be input together
prevent classification. Therefore, improving the performance of the
detection model is necessary.

4.4.2 Discussion. The model constructed in Section 4.4.1 demon-
strated high classification performance but showed signs of over-
fitting. Therefore, this section aims to mitigate overfitting using
dropout and further improve classification accuracy. Training pa-
rameters such as the number of epochs were set identically to
Section 4.4.1, and model training and evaluation were performed
with dropout rates of 0.3, 0.4, 0.5, and 0.6. The evaluation results
for model performance at each dropout rate are shown in Table 6.
When the dropout rate was 0.5, the macro-F1 score reached its maxi-
mum, achieving a slight improvement in classification performance
compared to before applying dropout.

5 Conclusion
This paper proposes a method for acquiring tactile paving location
information and classifying block types using a bicycle equipped
with a compact camera and a GPS module. The proposed approach
successfully demonstrated that even images captured while cycling,
which are prone to motion blur and distortion, can achieve tactile

paving detection with mAP50 of 0.777 using the object detection
model YOLOv11, and classification with a macro-F1 score of 0.898
using the CNN ResNet18.

However, we identified challenges, including the false detection
of asphalt surfaces and the inability to classify whenmultiple blocks
are erroneously detected as a single object. Moving forward, we
plan to address these issues by expanding the training data and
developing and verifying object detection models optimized for
specific camera installation locations.
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