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Video cameras are prevalent in large cities but their use outside of public safety remains limited due to
legitimate privacy concerns. Nevertheless, the rich information they can capture appears incredibly promising
for large-scale smart city applications, as they can function as very powerful and versatile sensors. This
ambivalence raises the question of whether such image data can be used in a privacy-responsible manner.
Encryption-based solutions assume the end server can be trusted with keeping data safe; data leaks show us
this assumption does not necessarily hold true. Traditional image obfuscation methods such as pixelization or
blurring on the other hand fail to offer both sufficient privacy and utility. As such, privacy approaches that
can provide privacy protection directly on the data itself while retaining practical utility are required. We here
extend two such notions, differential privacy and k-anonymity, to image data, and extensively evaluate the
resulting privacy-utility tradeoff on cross-camera person re-identification and attribute recognition data. Our
results show that our proposed approaches can significantly reduce the privacy-sensitivity of image data at
source while retaining decent utility for vision-based smart city applications.
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1 Introduction

Cities are rapidly evolving, with an ever-growing number of citizens flowing to them and an
aspiration to modernize the way they function. Consequently, the interest in smart cities, which
exploit data collected by large networks of ubiquitous sensing devices to help improve the city’s
inner functioning, is peaking, with both large- and small-scale projects being developed around the
globe [35]. Most of these projects closely associate the concept of smart cities with the use of a
wide array of IoT devices [57], allowing large amounts of data to be collected and enabling, e.g.,
policymakers to make informed urban planning decisions [52], transport or tourism companies to
achieve commercial success [34], or individuals to plan routes with high context awareness [31].

This wide variety of applications largely depends on comprehensive data collection regarding
human flows within a city. One type of device that is already prevalent within cities are video
cameras. While ordinarily installed as a dissuasive safety device, for use by security services for
real-time or retrospective surveillance, their feeds carry incredibly rich information, and thus have
much potential for use in typical smart city applications. This however stumbles on particularly valid
concerns regarding people’s right to privacy. Taken together, these issues form the privacy-utility
compromise: How much can visual data be protected while still retaining practical value for smart
city applications? Camera-based smart city applications rely on standard computer vision tasks;
we here focus our attention on two such tasks, cross-camera person re-identification (reID) and
demographic predictions, which together are expected to enable route-based smart city applications.

While existing methods such as encryption and traditional image obfuscation methods (e.g.,
pixelization or blurring) can offer a degree of privacy protection, they may be impractical or
insufficient in actual smart city scenarios. Encryption, for instance, assumes the end server can be
trusted with the data; the reality is that the data processor may not be trusted by users, or that it may
be trusted but susceptible to data leaks [8]. Due to their computational complexity, cryptographic
solutions to this issue such as homomorphic encryption remain impractically slow [73], especially
for visual data. Pixelization or blurring does not always suffice to guarantee anonymity, as original
images have been shown to be recoverable from their obfuscated counterparts [30, 47].

In these circumstances, research on other forms of privacy has flourished over the last decades.
Concepts such as differential privacy [21] or k-anonymity [56] aim to model different ways in which
a practical equilibrium between privacy and utility can be achieved, but their initial application
domain is databases, and there is limited research on their suitability for image data. To bridge this
gap, we here broaden the analysis of our previously introduced image differential privacy (IDP)
mechanism [46], and additionally introduce and analyze a novel non-uniform body part segmented
class-activation mapping (CAM)-based IDP mechanism. Furthermore, we propose the first
extension of k-anonymity to the image domain, and confirm that our proposed IDP mechanisms
successfully increase privacy from a k-anonymity perspective.

We make the following contributions:

— We extend the analysis of our recently introduced IDP mechanism with extensive experiments
on two large person relD datasets and one facial attribute recognition dataset.

— We introduce a novel IDP mechanism combining an existing body part segmentation model
with CAM to better target privacy-sensitive areas within images through non-uniform noising
and partial inpainting.

— We newly introduce a method to empirically compute the k-anonymity of an image set and
discuss the relationship between its anonymity factor k and IDP’s e.

— We show that our proposed mechanisms outperform traditional image obfuscation methods,
providing data with a quantifiable privacy budget ¢ resulting in a higher anonymity factor k
while retaining practical utility, and identify and discuss privacy-utility tradeoff points.
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— We conduct an online user survey to collect the perceived acceptability of images protected
through our proposed IDP mechanism, and find over half of the respondents are satisfied with
the provided privacy protection.

2 Related Work

This section focuses on privacy definitions and methods, specifically those related to images, and
introduces cross-camera person relD with a focus on existing privacy-aware studies.

2.1 Privacy

Privacy has grown to a major concern over the last years, which has led to many studies striving
to define, protect, or improve privacy. We briefly introduce the concepts most relevant to our work.

2.1.1 Differential Privacy (DP). Since its introduction by Dwork et al. [20, 21], differential
privacy has become an incredibly popular way to model formal data privacy, able to provide
quantifiable privacy guarantees for statistical data releases, providing individuals roughly the
same privacy that would result from having their data removed. Its robustness against arbitrary,
unforeseen attacks has caused the concept to be utilized by Google [22], Apple [6], Microsoft [18],
the U.S. Census Bureau [2], and SAP [33]. Initially introduced for use on statistical databases, recent
research has focused on extending DP’s desirable properties to other forms of data, such as location
data [5] or deep learning models [1].

2.1.2  k-Anonymity. As formalized by Sweeney [56], k-anonymity is a property of a dataset that
characterizes the re-identifiability of its data records. A given set of data is said to be k-anonymous
if each data record is made indistinguishable from at least k — 1 other data records in terms of
a given set of quasi-identifiers, essentially setting an upper bound of 1/k to each data record’s
relD probability. While still widely used today, k-anonymized data is known to be susceptible to
background knowledge attacks [45, 64], specifically because k-anonymity makes the assumption
there exists a clear distinction between quasi-identifiers and non-identifying attribute values, which
is not necessarily true.

2.2 IDP

With unstructured data forming the largest part of today’s data landscape, multiple studies have
investigated the possibility of applying differential privacy to images. While a consensus has yet
to emerge on a universal definition for IDP, the common approach in these studies has been to
vectorize unstructured data into a structured data form [76], which can then be obfuscated with
conventional DP methods. The foremost issue is that image data is inherently high-dimensional;
however, to satisfy differential privacy, noise must be scaled to data sensitivity, i.e., just how
different two images can be. As different studies tackle this problem in different ways, research on
IDP extends in a variety of directions.

2.2.1 Pixel-Level IDP. Pixel-level IDP focuses on perturbing pixel values in a manner that
satisfies differential privacy. This implies the data sensitivity varies directly with the size and
number of color channels within the image. The first extension of differential privacy to the image
domain limits data sensitivity by introducing a pixelization step, prior to differential privacy noise
addition, and by working exclusively with grayscale images [23]. A couple studies look into treating
grayscale images as data streams, which can then be traversed via a sliding window procedure:
Liu et al. [43] use this idea to allocate privacy budget dynamically to different areas in the image
but remains obtuse as to how it computes data sensitivity, and [37] uses the same idea to perform
neighboring pixel merging but equates local sensitivity (at specific positions in the data stream) to
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global sensitivity (throughout the whole data stream), which raises questions about the resulting
differential privacy guarantee. Another study introduces a sampling method [49] adapted from [59],
which samples and releases a certain number of pixels of the original image and then interpolates
the remaining pixels. The IDP mechanisms proposed in this article also fall into the family of
pixel-level IDP methods.

2.2.2 Generation-Based IDP. Generation-based IDP relies on the use of a pretrained autoencoder
model or generative adversarial network to compress images into a latent vector representation.
This reduces the data sensitivity to the sensitivity of the latent vector representation, which can
then be obfuscated in a way that satisfies DP, and be fed back to the pretrained model to generate
an obfuscated image. Where most existing studies differ is how they calculate the sensitivity of
the latent vector, which is real-valued, and therefore not as unambiguously defined as with bound
pixel values. Some studies suggest forcing the latent vector into a specific format [10, 75], where
the latent vector represents attributes in a binary manner, but only focus on noising a select subset
of these attributes, implying only partial differential privacy guarantees. Most studies simply set
the sensitivity to some empirical value [42, 61, 72], as observed on a given dataset; this works for
protecting that dataset, but is not guaranteed to satisfy differential privacy for new data, which
may not fit the distribution of the dataset that was used for empirical sensitivity calculation. This
issue can be solved elegantly by introducing a clipping step [40, 53], which forces outlier latent
vector values into an acceptable range of values, as observed from a given dataset; this then bounds
the latent vector’s sensitivity, and provides sound differential privacy, but increases the tendency
of generative models to leak information about the training images through their output images.

2.2.3  Metric IDP. To circumvent the sensitivity issue, a line of work has emerged that focuses on
applying metric differential privacy [11] rather than pure differential privacy to images. Instead of
calibrating noise to fixed data sensitivity, in order to provide the same level of privacy protection to
all inputs, metric privacy calibrates noise to the distance between inputs according to a predefined
distance function, which provides similar privacy for similar inputs. The first metric IDP study used
singular value decomposition (SVD) [24] for this purpose, where noise addition occurs at the
singular vector level, and the invertibility of SVD is used to reconstruct an image afterwards. This
idea is also used in [66], which uses a high-dimensional space instead of SVD. Some generation-
based IDP studies [12, 16] also operate under metric differential privacy. As metric differential
privacy does not offer the same guarantees as pure differential privacy, their privacy parameters do
not line up, making them hard to compare in practice.

2.3 Cross-Camera Person relD

Cross-camera person relD is a computer vision task that is concerned with matching together
snapshots from individuals across different points of view [68]. While still a matter of designing
informative appearance signatures for individuals [26], the advent of deep convolutional neural
networks [36] has shifted this problem to yet another learning problem. It is traditionally formalized
as an image retrieval task, where the model is to rank all gallery images in order of similarity to
a given query image, having been trained on a training set composed of disjoint identities. This
widely accepted definition skims over the object detection, tracking, and segmentation components
that are involved in end-to-end relD frameworks to focus more heavily on how to transform
images into effective vector representations [9, 26], and on how to score such representations
against one another. These two concerns are usually modeled in terms of a backbone, a feature
extractor tasked with transforming images into numerical vectors, a machine learning network,
which transforms these vectors into identity-specific embeddings, and its appropriately chosen
loss function. Provided images can be transformed into meaningful identity-embeddings, pairwise
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distance between such embeddings has proven an effective way to build reID models [70]. The
backbone conventionally consists of a pretrained deep CNN model, most commonly a residual
neural network (ResNet) model [28], typically pretrained on ImageNet [51]. The subsequent
network is usually a simple feed-forward network trained under Triplet Loss [29], which helps
learning semantically meaningful identity features. A large body of research has been concerned
with improving onto this base framework, with recent studies aggregating information from multi-
ple person images [62], leveraging spatial-temporal data [58], exploring large-scale unsupervised
pretraining [27], exploiting attention mechanisms [14], learning specific body-part representations
[54], eliminating clothing bias [67], or focusing on model explainability [13], among others.

2.4 Privacy-Preserving relD

Some research has concerned itself with privacy-preserving relD, with varying focus areas for
privacy-preservation: private data collection, private network communications, or private data
storage. On the data collection side, various studies explore replacing classic RGB cameras with
sensors deemed less privacy-invasive, e.g., continuous-wave radars [25], event cameras [4], or
LiDARs [48]. On the network side, privacy-preserving reID focuses on developing frameworks
with inherent privacy guarantees, e.g., through encryption [15] or federated learning [63]. On the
data storage side, the main goal is to transform data to reduce its inherent sensitive information
while retaining utility for relD, e.g., by blurring faces [17], through encoder-based obfuscation
[74], through adversarial perturbations [55] or through encryption [69]. Within these data storage
approaches, some studies also provide a way for trusted parties to reverse obfuscation and retrieve
the original images, through decoder-based recovery [55, 74] or decryption [69]. To the best of our
knowledge, the effect of applying a differential privacy mechanism directly onto RGB image data,
which then falls in this third category of privacy-preserving relD, has not been explored yet.

3 Privacy Methods and Definitions

This section summarizes our previously proposed e-IDP mechanism and how it differs from existing
pixel-level differential privacy, introduces a novel segmented CAM-based approach to e-IDP, and
details the motivation and the specifics of our proposed image k-anonymity evaluation procedure. A
brief discussion on the runtime performance of these different methods is included in Appendix A.

3.1 &-IDP Mechanism
Our previous study [46] extended Fan’s pixel-level IDP mechanism [23].

Definition 3.1 (e-IDP). A randomized mechanism M gives ¢-IDP if for any two images i and j of
same dimension, and for any possible output R € Range(M):

Pr[M(i) € R] < exp(e) Pr[M(j) € R]. (1)

The Laplace mechanism can provide such a guarantee [20], if M is defined such that the random
noise n is calibrated to a chosen privacy budget ¢ and to the £ -sensitivity Af of function f:

M(x) = f(x) + n, where n ~ Laplace (O, ATf) . (2)

Fan’s mechanism defined this function as the pixelization of input images, and made two main
assumptions to keep the magnitude of its #; -sensitivity in check: (1) images are exclusively grayscale,
and (2) the sensitive information within a given image is expected to cover at most m of its pixels,
i.e., erasing these m pixels suffices to protect said image (this is defined as the m-neighborhood
notion). Multiple subsequent studies [24, 40, 76] have argued this definition too strong, introducing
too large amounts of both pixelization and random noise and therefore destroying too much of the
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data’s utility. We here argue the opposite, as both of its underlying assumptions severely restrict
the application range and limit the practical usability of the mechanism. We therefore relax both of
these assumptions, expecting that: (1) images are RGB, and (2) the sensitive information within a
given image can be expected to cover all of its pixels.

Relaxing these two assumptions naturally leads to much higher # -sensitivity. We counteract this
by introducing a second dimensionality reduction step, beyond the pixelization step proposed by
Fan. This color quantization step drastically reduces possible color values for pixels, thus decreasing
sensitivity by the same factor, but is expected to have a limited effect on data utility, as the RGB color
model defines a large number of fine-grained color nuances that can be expected to be redundant
from an image-processing perspective. As such, we redefine the function f at the core of the
e-IDP mechanism as the identity function on RGB images of width w and height h, with optional
pixelization determined by b and optional color quantization determined by c. The #;-sensitivity of
this function, or maximum difference between two given images, then becomes:

wh (28 }

Pixelization is applied such that 4 pixels are reduced to a single pixel, and color quantization
reduces the range of color channels from its original 8 bits to (8 —c) bits. Not using either pixelization
or color quantization is represented by parameter values b = 0 and ¢ = 0, and has the ¢ -sensitivity
function simplified to that of the identity function. Applied to a set of images, this mechanism
sets an upper bound of ¢ to the privacy loss incurred by the individuals represented in this set.
Provided the original data is discarded, this privacy loss cannot be increased, i.e., the images cannot
be made less private, no matter what auxiliary information might be available. This key property of
differential privacy is referred to as post-processing [21].

3.2 Segmented CAM-Based ¢-IDP Mechanism (SegCAM-IDP)

We additionally introduce a non-uniform noising mechanism, which uses a human body part
segmentation model prior to the noise addition mechanism. Whereas our ¢-IDP mechanism adds
noise to all pixels of an image equally, the aim here is to distinguish degrees in private information
within an image prior to obfuscation, and to use this information to obfuscate accordingly. By
concentrating obfuscation efforts on specific areas of an image, to maximize or minimize local
impact, we expect to be able to target “desirable” and “undesirable” tasks more efficiently.

Figure 1(a) illustrates our basic workflow for segmentation-based obfuscation: (1) each image is
ran through a CE2P human parsing model [50] which segments the image into 20 distinct body
parts; (2) each image is ran through a pretrained gender classification CNN with CAM [78] to
identify the areas most/least crucial to gender discrimination; (3) the segmentation and CAM
information are integrated in order to obtain the average CAM-value per body part area (SegCAM);
(4) an IDP mechanism uses this integrated information to do non-uniform noise addition to the
image. In essence, this will result in high noise addition for body parts that are deemed unimportant
to gender classification, while important body parts will suffer lower noise addition. In this manner,
we expect to maximize the suitability of obfuscated images for the gender classification task;
maximizing the suitability of obfuscated images for any other task would be possible by using
CAM information relevant to that task. However, given that CAM is a relatively computationally
expensive process, it is quite difficult to implement on top of inherently computationally expensive
tasks such as relD, which is why we here focus on gender-specific CAM information.

This segmented CAM-based obfuscation satisfies IDP. Indeed, provided that the SegCAM in-
formation is normalized prior to noise addition, such that the sum of all pixels’ weights w;; is
equal to 1, we can define the noise added to each pixel x;; as w;je = ¢;. Since 3, w;; = 1, and
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(a) SegCAM-IDP. (b) SegCAM-IDP with partial inpainting.
Fig. 1. Visualization of the proposed segmented CAM-based IDP mechanism.

through differential privacy’s sequential composition property, this leads to }’ ¢;; = ¢. In other
words, instead of all pixels being noised equally, each pixel value x;; is now perturbed as follows:
M ) = x4 N . ( Afij )
segCAM(Xij) = x;; + n;j, where n;; ~ Laplace |0, — | (4)
ij

To further exploit the SegCAM information, we also look into partial inpainting for body parts

deemed important to gender classification, as illustrated by Figure 1(b). Any (non-background)

body part whose average CAM-value is higher than ﬁ (the expected CAM-value in situations

where all body parts would be equally important) is inpainted. We consider four types of inpainting:

black in the shape of the body part, average body part color in the shape of the body part, black box

around the body part, and average body part color box around the body part. Non-uniform noise

addition is performed on the non-inpainted areas (after normalization of the non-inpainted pixels’

SegCAM weights), such that they satisfy IDP. Additional visual examples of images protected with
SegCAM-IDP are included in Appendix B.

3.3 Image k-Anonymity

The main obstacle with applying k-anonymity directly onto images resides in its poor generalization
ability to high-dimensional data [3], which images inherently are. Indeed, plain k-anonymity
essentially states that for any possible combination of values a set of quasi-identifiers can take on,
there exist at least k samples satisfying this combination. This then guarantees that knowing the
values for the quasi-identifiers of a given sample does not suffice to uniquely identify that sample.
The ability of samples to “hide in the crowd,” as k-anonymity is often described, requires a “crowd,”
i.e., a set of data whose size is magnitudes larger than the number of possible value combinations
for the quasi-identifiers. One can freely define what attributes are to be considered quasi-identifiers,
but it is reasonable to assume that the size of this set grows jointly with the overall number of
attributes. An RGB image of width w and height h consists of 3wh different numerical features,
each of which can take 256 possible values; providing a k-anonymity guarantee on a set of these
features, as quasi-identifiers, of any meaningful size, is essentially impossible. Even assuming one
could get around this issue, how one can choose a meaningful set of quasi-identifiers within raw
image features remains a non-trivial question.

We therefore introduce a novel procedure for computing the k-anonymity of a high-dimensional
image dataset, which we describe in Algorithm 1 and illustrate in Figure 2. Through this procedure,
one can characterize the ability of a machine learning model to learn meaningful attributes from
an image set. The primary goal of any image obfuscation is to reduce the ability to extract privacy-
sensitive information from image data, but it can be difficult to define a measure of that ability. Our
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Algorithm 1: Computing the Image k-Anonymity of a Dataset

Require: Number of identities p, number of attributes n, number of classes per attribute m,,
Require: Attribute set A = {ay, ..., an}, quasi-identifier set QI C A

Require: Classifier F1-scores F = {fi, ..., fu }, per attribute

Require: Classifier confidence scores C = {cy,11, ..., p,n,m, }» Per person, attribute and class
Require: Ground-truths T = {t;1,...,ty .}, per person and attribute, encoded as class indexes

1: EQ « generateCombinations(QI) > Generate all possible equivalence classes.

2: for i « 1 to length(EQ) do

3: EQC; «+—0 > Initialize a counter for each equivalence class.
4: for ID « 1to p do > For every identity, initialize an empty set

5 V «—{} for all valid attr. assignments for this person.

6: for ATT « 1tondo > For every attribute and possible attribute value,
7 for VAL « 1to marr do prediction confidence is evaluated.

8 if cipaTT VAL + ;ﬁffjl > ﬁ then » If a given classifier guess is confident enough,
9: V «— VU{(ATT,VAL)} the associated attribute value is added to V.
10: else if VAL = tip a1 then > If the classifier fails to identify the ground-truth,
11: V « VU{(ATT,VAL)} the associated attr. value is also added to V.
12: for i « 1 to length(EQ) do > For each equivalence class,
13: if EQ; C V then if it is represented by the current identity,
14: EQC; « EQC; +1 the associated counter is incremented.

> k is the number of appearances of the least-
15: k < minimumExcludingZero(EQC) represented equivalence class, excluding
16: return k entirely unrepresented equivalence classes.
Image set Trained Attribute table

”””””” ClaSSiﬁerS person | gender age | bag hair
#fm 19-30 | none short
#|m 40-50 | backpack | short
w|F 4050 | backpack | short | - |mage
— #3|m 19-30 | none long | .
#|F 3040 | handbag | short T k_anonymlty
| 5060 none | long | value
#6|F 3040 | none long

. #6|F 40-50 | none long
e = = |

Fig. 2. Visual illustration of the proposed k-anonymity procedure. Notice how persons #2 and #6 appear
twice in the table, as the classifiers are unable to decide their gender and age, respectively.

proposed algorithm allows that measure to be k-anonymity, and computing this measure before
and after image obfuscation then offers an intuitive view of the ensuing privacy gains.

The proposed evaluation procedure requires a set of images, annotated in terms of an arbitrary
number of demographic or visual attributes, and a set of classifiers trained on this image dataset
to recognize these attributes. The key idea behind the proposed algorithm is that it simulates
how k-anonymity would be computed on a database table that contains attribute values for every
person; such a table can be constructed through these trained classifiers. The algorithm examines
the performance, confidence, and correctness of the classifiers’ predictions, and interprets poor,
unconfident, or wrong predictions as instances where the machine learning model is unable to
identify a meaningful attribute value. If the model cannot decide on a definite value for an attribute,
that means multiple of its values remain admissible; the procedure reflects this by including multiple
rows in the database table, for each of the admissible possibilities. For spatial complexity reasons, the
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intermediate database table is not constructed; the algorithm instead directly reasons on equivalence
classes (i.e., possible combinations for quasi-identifier values), which yields the same results.

Since the procedure from Algorithm 1 relies on the predictions of a trained machine learning
model, the threshold defining what constitutes a confident enough guess is adjusted relative to the
actual prediction quality [F1-score] of said model, as well as to chance-level %:

1—[F1-score 1
[confidence] + ¥ > —. (5)

m-—1 m
If the classifier’s prediction quality is flawless, i.e., [F1-score] = 1, this simplifies to the
following, simply meaning a guess is to be considered confident enough whenever the confidence

exceeds chance-level:

1
[confidence] > —. (6)
m

On the other hand, for worst-case classifier prediction ability, i.e., [F1-score] = % this simplifies
to the following, meaning every guess is to be considered confident enough, as the classifier is
predicting entirely randomly:

[confidence] + 1 > l (7)
m m

A well-chosen attribute classifier model is expected to fall somewhere in between these two
extreme cases. In this manner, the threshold thus gets adjusted relative to the actual prediction
ability of trained classifiers, which is then expected to yield reasonable estimates for how well
attribute values can be acquired from a set of images.

4 Experimental Method

This section introduces the datasets used in experiments, the explored privacy parameters, the
evaluated relD, and attribute prediction models and the baseline obfuscation methods.

4.1 Datasets

Two different reID datasets and one attribute recognition dataset are evaluated in this study.
Market1501 [77] is the most widely used public reID dataset, containing 32,668 cropped pedestrian
images of 1,501 different individuals, collected across 6 cameras in front of a supermarket in
Tsinghua University. Every individual appears on at least 2 cameras, and we use the standard
evaluation protocol where 751 identities are used for training (12,936 images), while the remaining
750 are used for testing (13,115 images for the gallery set, when excluding so-called “junk” images,
and 3,368 images for the query set). Market1501 is annotated in terms of 27 attributes [41], including
2-class gender (male, female) and 4-class age (young, teenager, adult, old); the remaining 25 binary
attributes are related to clothing type and color. All images in Market1501 are 128 X 64 in size.
The richly annotated pedestrian (RAP) dataset [38] is a more recent public attribute recog-
nition and reID dataset, which includes 84,928 cropped pedestrian images, 26,638 of which are
identity-annotated for a total of 2,589 different individuals, collected over 25 different cameras
inside a shopping mall. While the RAP dataset does include a standard train/test split, the exact way
the test set is separated into a gallery and query set is left unspecified. For our evaluation protocol,
we thus proceeded as follows. For each identity/camera pair in the test set, an image was randomly
sampled. Within this auxiliary subset, for each identity, a number of images were sampled, up to
half the amount of cameras the identity appears in, but no more than five images. The resulting
subset is our query set; all remaining test images make up our gallery set. Overall, 1,294 identities
are used for training (13,148 images), the remaining 1,293 are used for testing (10,667 images for
the gallery set and 2,763 images for the query set). RAP is annotated in terms of 111 attributes,
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(a) Regular relD model. (b) Centroid-based relD model.
The query image is erroneously matched The query image is correctly matched with
with the nearest image’s identity. the nearest mean centroid’s identity.

Fig. 3. Difference between relD models. Red (green) image borders represent wrong (correct) matches.

including 3-class gender (male, female, undetermined) and 5 binary age attributes (16 or less, 17-30,
31-45, 46-60, 61 or more). We discard the latter two age attributes as they contain no samples in
the reID subset of the RAP dataset. The remaining 105 attributes binary attributes are related to
clothing type and color, body shape, activity, and occupation. Images in RAP have varying sizes,
ranging from 114 X 28 to 634 X 389; we here resize all images to 128 X 64, in line with Market1501.

As both Market1501 and RAP suffer from class imbalance for demographic attributes, which
are arguably the most important attributes from a privacy perspective, we additionally consider
FairFace [32], a face image dataset that provides balanced 2-class gender (male, female), 9-class age
(0-2, 3-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70, or more), and 7-class race (White, Black,
Indian, East Asian, Southeast Asian, Middle Eastern, Latino) annotations for all of its 97,698 images.
All images in FairFace are 224 X 224 in size.

4.2 Person relD Model

We use a simple yet effective reID model in the form of the widely used Bag of Tricks model [44]
with a simple ResNet50 [28] CNN backbone. As a means to further enhance the robustness of
this model against privacy perturbations, we additionally consider the use of the Centroid Triplet
Loss function, as introduced by Wieczorek et al. [62], and their class centroid representations for
both the training and testing stages, which achieves state-of-the-art performances on classic relD
datasets. Figure 3 illustrates this differences between regular and centroid-based reID models.

This centroid-based model slightly shifts the person reID task from ranking images (i.e., specific
identity-instances) to classifying into actual identities, by averaging image embeddings for every
person in the dataset. Not only does this arguably make more sense for practical reID applications,
but we here hypothesize that these aggregated representations can help the model to magnify the
identity-specific latent features that remain underneath the privacy perturbations added to images.
As such, we train and test our centroid-based models directly onto noised training, gallery, and
query samples, meaning the model never accesses the original, unprotected images. We report
relD performances in terms of mean average precision (mAP), which measures the mean of the
average precision score for each image within the query set, and Rank-1, defined as the percentage
of query set images for which the predicted highest confidence gallery match is a true match.
Experiments are repeated three times and we report average metric values.

4.3 Attribute Recognition Model

The attribute predictions reported in this work and used to empirically evaluate k-anonymity as
per our proposed method are obtained using simple fully connected layers on top of a pretrained
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Table 1. Parameter Settings Discussed in This Study

b ¢ | Af (Market1501/RAP) Af (FairFace)
(A) High color quantization 0 6 221,184 1,354,752
(B) Mixed pixelization and color quantization | 1 5 702,464 4,302,592
(C) High pixelization 2 4 1,728,000 10,584,000
(D) No pixelization nor color quantization 0 0 135,834,624,000 | 831,987,072,000

ResNet50 [28], a common backbone for image attribute recognition. One layer is trained per
attribute, and performances are evaluated in terms of the F1-score as obtained on the test set, which
aggregates both the gallery and the query sets for Market1501 and RAP. Experiments are repeated
three times and average metric values are reported. For the reID datasets Market1501 and RAP,
which contain multiple image representations of the same identity, we report the F1-scores on a
per-identity basis, where the predictions obtained on single images are aggregated by identity via a
majority vote. This allows for a fairer comparison with the centroid-based reID model, which also
benefits from using multiple images per identity.

4.4 Privacy Parameters

To explore the effect of dimensionality reduction parameters b and ¢ of our ¢-IDP mechanism
on privacy budgets ¢ and reID performances, we report results for four parameter combinations
throughout this study, which are summarized in Table 1. These parameters were chosen empirically,
for their performance and illustrative purposes. Privacy budgets ¢ were made to vary between
{1,2.5,5} X 10%, where x € {0, ..., 12}. Reported sensitivity values Af are computed both for images
with w = 64 and h = 128, as is the case in Market1501 and RAP, and for images with w = 224 and
h = 224, as in the case for FairFace. It clearly appears the use of dimensionality reduction vastly
reduces Af values, with color quantization parameter c having the largest impact.

4.5 Baseline Methods

This study explores the feasibility of vision tasks on image data protected by differential privacy.
Considering the limited studies in this direction, we first compare our proposed method to a variety
of traditional image obfuscation methods. Blurring is a simple privacy-preserving method that
applies Gaussian kernels to modify each pixel relative to neighboring pixels; we here consider
kernel size k = 25. Deleting face information by superimposing black boxes on faces can also
provide some form of privacy [17]. We here use a CE2P human parsing model [50] to segment
images into labeled areas, and consider those labeled as face, hair, hat, and sunglasses as sensitive;
this area is enlarged into a rectangular shape, and all pixels within are set to zero. Pixelization
remains a common way of achieving privacy; we here consider pixelization factor b = 2. We also
include results with simple color quantization, when reducing color information by a factor ¢ = 6.

Besides these traditional image obfuscation methods, we also compare our results to two pixel-
level IDP mechanisms, which were reproduced from their respective papers. One of these mech-
anisms is DP-Pix [23], the mechanism we expanded upon, for which the pixelization factor is
set to b = 2. Results are also compared to DP-Samp [49], which clusters pixel intensities into k
clusters, then samples some of the most common pixel intensities and releases a number of them.
The number of clusters is set to k = 48. For both of these methods, the m-neighborhood, i.e., the
amount of sensitive pixels m, is set to wh (all pixels in the image), in line with our own mechanism,
and privacy budgets ¢ are selected empirically depending on the dataset, for ease of comparison.
Note that DP-Pix and DP-Samp work exclusively with grayscale images. An illustration of the
selected baselines is provided in Figure 4.
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Original Blurring Noface Pixelization Quantization  DP-Pix DP-Samp Original Blurring Noface  Pixelization Quantization — DP-Pix DP-Samp

Fig. 4. Baseline methods on example images from Market1501 (left) and RAP (right).

Directly comparing to other IDP methods is difficult. To the best of our knowledge, there exist
few other pixel-level IDP mechanisms, and even fewer publicly available implementations of any
IDP mechanisms at all. Beyond pixel-level IDP, generative-based IDP methods appear particularly
unsuitable for the target task of relD, as they cannot offer consistent obfuscation: Two images
of the same person are likely to be noised into two images of completely different people, which
completely erases data utility in terms of reID. IDP mechanisms operating under metric differential
privacy are also difficult to compare to, as they operate under a different differential privacy
definition, which leads to a different privacy granularity in the sense of [21] and results in different
scales of privacy budgets ¢, rendering comparisons ill-defined.

5 Results

This section details the effect of the proposed e-IDP and SegCAM-IDP mechanisms on reID perfor-
mances, on attribute predictions, and on image k-anonymity values, then compares the proposed
mechanism to existing baselines. It also includes a subjective analysis of perceived privacy, with
example output images and the results of an online user survey.

5.1 Cross-Camera Person relD on Differentially Private Images

The effect of our proposed e-IDP mechanism on relD performances is reported in Figure 5 for
both Market1501 and RAP. Pixelization and color quantization parameters were made to vary
by column; both the performance of regular reID models (light lines) and centroid-based reID
models (dark lines) are included. It immediately appears from all graphs that centroid-based reID
models are much more robust to differentially private noise, with all dark lines outperforming light
lines. For both types of models, a decrease in privacy budget ¢ (which improves privacy) degrades
performance metrics, but regular reID models suffer these decreases from higher privacy budgets ¢
(i-e., at a worse privacy level) than centroid-based reID models. This indicates the latter are indeed
a better choice when attempting to do reID on images protected through differential privacy.

Having established this, we now further discuss the observed differences between dimensionality
reduction parameter settings A-D. These are juxtaposed in Figure 6 for both datasets. Market1501
performs noticeably better than RAP; this has been noted by the authors of the latter dataset [38],
and is likely due to the higher number of camera point-of-views and occlusions in RAP, as well
as larger variations in the number of images per pedestrian. Whereas Market1501 performances
are hardly impacted by varying dimensionality reduction parameters b and ¢ in scenarios where
little noise is added (high privacy budget ¢), RAP performances are more largely impacted. Indeed,
the right-hand side of the graph for RAP shows the high color quantization setting (blue line, A)
scoring noticeably lower than the setting with no pixelization nor quantization (red line, D).

In both these graphs and for all dimensionality reduction parameter settings, we mark with
* the privacy budgets ¢ around which reID performances go from almost unaffected to nearly
chance-level; this behavior is due to color channels having a relatively limited range of values,
which means values get forced into their minimum or maximum value once the privacy budget ¢
drops under a certain threshold. We define these as tradeoff points, at which image data is made
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Fig. 5. RelD performances (mAP on top, Rank-1 below) of centroid-based (dark line) and regular (light line)
models on both Market1501 and RAP after e-IDP. Note the different scales on the x-axes.
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Fig. 6. RelD performances of centroid-based models on Market1501 and RAP after e-IDP. Only mAP is
reported for brevity, as Rank-1 behaves almost the same.

maximally differentially private while remaining reasonably useful (mAP% above half of what it
would be with a high privacy budget ¢, i.e., under low privacy constraints). Both datasets display
the same order in which dimensionality reduction parameter settings encounter these tradeoff
points. Without any dimensionality reduction (red line, D), any ¢ value under 10° essentially erases
all information within pictures, whereas using either or both pixelization and color quantization
can allow for much lower privacy budgets ¢ where performances remain reasonable. Using high
quantization (blue line, A) can achieve a privacy budget as low as ¢ = 2,500 even with a mAP
> 90% on Market1501. This shift in ¢ values for different parameter settings is related to their
difference in sensitivity values A f, which we reported in Table 1. Reducing the amount of infor-
mation in images, or sensitivity, through dimensionality reduction prior to differentially private
obfuscation reduces the redundancy inherent to the way raw images store information, which in
turn helps privacy.

5.2 Attribute Recognition on Differentially Private Images

The impact of the proposed e-IDP mechanism on demographic predictions is included under
Figure 7. Both Market1501 and RAP offer very similar graphs for gender predictions, with good
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(a) High quantization (b) Mixed pix. and quant. (c) High pixelization (d) No pix. nor quant.
(b=0, c=6) (b=1, c=5) (b=2, c=4) (b=0, c=0)
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Fig. 7. Demographic prediction ability on Market1501, RAP, and FairFace, after e-IDP. Note the different scales
on the x-axes, per column. For RAP, age F1-scores are averaged across the dataset’s binary age attributes.

prediction ability at the x-marked tradeoff points (which are kept consistent with the previous
section), but age predictions on these datasets are already relatively poor before even applying any
privacy mechanism. As with the reID performances on these datasets, the curves look very similar
for all parameter settings (A-D), differing only by the privacy budgets ¢ on the x-axes. FairFace
offers the most complete demographic annotations, and therefore performs noticeably better for all
tasks. As before, we identify tradeoff points for this dataset and mark them with x; they are chosen
as the lowest privacy budgets ¢ before prediction abilities start to drop significantly. Compared
with the reID task, the slopes around these tradeoff points are gentler for all datasets. We attribute
this behavior to demographic predictions being a simpler task than relD.

5.3 Image k-Anonymity Analysis

We here show and discuss the behavior of our proposed image k-anonymity evaluation metric.
Using the attribute classifiers trained in the previous section, we apply the procedure we proposed
in Algorithm 1. One major hurdle in this process is defining which of the available attributes
are to be considered quasi-identifiers in the sense of k-anonymity, i.e., which attributes are to be
considered most sensitive. One could argue that quasi-identifiers should include the gender or age
attributes, being demographic information, over sleeve length or carrying backpack; we include such
results under Figure 8, which reports how k varies with the privacy budget ¢ when considering
either gender, age, or race quasi-identifiers, subject to availability within datasets.

From Figure 8, it clearly appears that a lower privacy budget ¢ leads to a higher anonymity metric
k for the considered quasi-identifiers, for all three datasets. These graphs also include x-marked
tradeoff points consistent with those identified in previous sections, at which minor improvements
in k-values can be observed. The choice of quasi-identifier however has a big impact on the precise
value for k. Indeed, considering Market1501’s binary gender attribute a quasi-identifier naturally
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averaged to obtain these lines, denoted by k., k3., and ks, respectively. Note that RAP includes too many
attributes to be able to compute a ks, value for quasi-identifier triplets in reasonable time.

leads to a higher k value than when considering its 4-class age attribute a quasi-identifier, as there
are more individuals in the dataset that share the same gender than individuals sharing the same
age. This observation can also be made for FairFace, where the k value is higher when considering
7-class race a quasi-identifier rather than 9-class age.

We believe simply this way of choosing quasi-identifiers to be somewhat arbitrary, dependent
on some perceived sensitivity ranking of attributes and on available attribute annotations. We
therefore consider a more agnostic approach under Figure 9, which reports the mean k-anonymity
when every available attribute is considered a quasi-identifier separately; we refer to this metric as
k1. It also includes the mean k-anonymity when every possible pair and every possible triplet of
attributes are considered quasi-identifiers; these metrics are referred to as k. and ks., respectively.
In this manner, we can obtain a dataset and annotation-agnostic view of image k-anonymity,
without the need to manually pick quasi-identifiers, under the assumption that every attribute that
can be extracted from an image is to some extent privacy-sensitive.

From Figure 9, it appears a low ¢, i.e., a high selected privacy level, leads to a high k, i.e., a high
observed anonymity level; this is true for any quasi-identifier combination and across all three
datasets. The identified x-marked tradeoff points consistently show improved anonymity values k.
This indicates that our proposed e-IDP mechanism is able to provide increased k-anonymity levels
without being designed to explicitly optimize for this metric, which suggests it offers broad privacy
protection. Another observation to be made from this graph is that larger sets of quasi-identifiers,
i.e., larger n in k., lead to lower anonymity values. Given that more quasi-identifiers also mean
more equivalence classes (i.e., quasi-identifier combinations), this simply reflects how the pool of
individuals sharing the same quasi-identifiers shrinks as possible combinations increase.
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Table 2. Comparison of Our Proposed Method (under Parameter Settings A to D) on Market1501, RAP, and
FairFace with the Original Data (or SOTA When Available) and Existing Obfuscation Baselines

relD Gender | Age Race Anonymity

‘ Method ‘ Privacy ¢] H mAPT ‘ Rank-17 F17 F17 F17 ki T ‘ ki T ‘ k3. T || SSIM|
Original (SOTA [62]) - 98.3% | 98.0% 92.7% | 41.9% - 197 | 50 | 13 || 1.000
Blurring (k=25) - 71.5% 87.3% 82.8% 36.4% - 266 92 31 0.469
Face blackout - 82.1% 92.4% 85.1% 37.7% - 197 50 13 0.914

§ Pixelization (b=2) - 67.6% 85.2% 83.2% 35.2% - 266 92 31 0.661
E Quantization (c=6) - 71.3% 87.4% 84.4% 36.2% - 264 90 30 0.785
'—:‘a DP-Pix (b=2) [23] 50,000 41.1% 68.2% 81.7% 34.0% - 381 183 82 0.618
= | DP-Samp (k=48) [49] 50,000 35.5% 63.0% 77.4% 34.2% - 379 185 80 0.707
Proposed ¢-IDP (A) 2,500 90.5% 88.6% 85.6% 35.6% - 321 135 55 0.220
Proposed ¢-IDP (B) 10,000 77.2% 73.3% 79.2% 34.9% - 381 190 | 92 0.232
Proposed ¢-IDP (C) 50,000 72.7% 68.3% 83.5% 34.6% - 361 170 78 0.330
Proposed ¢-IDP (D) 10? 84.9% 82.1% 79.5% 35.6% - 379 188 91 0.144
Original (SOTA [38]) - 478% | 70.7% 96.7% | 74.2% | - 806 | 501 | - || 1.000
Blurring (k=25) - 25.9% 35.4% 82.9% 56.6%" - 833 534 - 0.570
Face blackout - 34.4% 44.8% 81.7% 59.0%* - 806 501 - 0.921
Pixelization (b=2) - 29.6% 39.5% 83.2% 57.6%* - 842 546 - 0.734

A4 | Quantization (c=6) - 13.1% 19.6% 82.5% 56.5%* - 934 672 - 0.821
§ DP-Pix (b=2) [23] 100,000 12.8% 20.9% 53.2% 57.3%* - 1,011 | 789 - 0.730
DP-Samp (k=48) [49] 100,000 11.8% 19.1% 51.4% 57.1%* - 1,000 | 772 - 0.753
Proposed ¢-IDP (A) 5,000 37.3% 31.2% 84.2% 58.0%* - 1,021 | 804 - 0.320
Proposed &-IDP (B) 25,000 40.7% 34.3% 81.0% 59.8%% - 1,008 | 785 - 0.395
Proposed &-IDP (C) 100,000 36.3% 29.9% 79.2% 59.6%" - 982 745 - 0.450
Proposed &-IDP (D) 2.5 % 10° 51.8% 45.1% 82.3% 59.7%* - 971 728 - 0.281
Original (SOTA [32]) - - - 94.4% | 60.7% | 75.4%° || 2,746 | 348 | 15 || 1.000
Blurring (k=25) - - - 90.1% 47.8% | 61.8% || 2,756 | 487 34 0.836
Pixelization (b=2) - - - 90.8% 49.3% | 61.9% || 2,779 | 471 18 0.869

§ Quantization (c=6) - - - 87.0% 45.0% | 55.5% || 2,928 | 442 25 0.742
E DP-Pix (b=2) [23] 250,000 - - 86.3% 45.0% | 55.1% || 3,158 | 521 45 0.367
& | DP-Samp (k=48) [49] | 250,000 - - 89.1% | 48.0% | 58.1% || 2,884 | 382 | 19 || 0.880
Proposed &-IDP (A) 10,000 - - 81.2% 36.3% | 45.6% || 3,314 | 587 64 0.032
Proposed &-IDP (B) 50,000 - - 80.6% 349% | 46.1% || 3,551 | 711 96 0.041
Proposed e-IDP (C) 250,000 - - 79.4% 34.9% | 46.5% || 3,507 | 796 94 0.076
Proposed &-IDP (D) 5% 10° - - 81.0% 37.1% | 48.0% || 3,175 | 499 | 45 0.038

Best non-SOTA/original values are highlighted in bold, per dataset. Italics denote SOTA values.
#Age attributes being binary in RAP, these values correspond to the average F1-scores for all age-related attributes.
bThe authors [32] simplify the task from 7-class to 4-class to obtain this result.

5.4 Baseline Comparison

We compare the performance of our relD and attribute prediction models with the proposed IDP
approach to a number of baseline methods, as introduced in Section 4.5, and to SOTA performances
on the evaluated datasets, and report all of these in Table 2. For our proposed method, we include
the performance and privacy budget ¢ at the tradeoff points identified with % in Figure 6 for
parameter settings A-D. Since traditional image obfuscation methods do not rely on a random
noising mechanism, no privacy budget ¢ can be estimated for these. We also include mean k-
anonymity values, as reported in the previous section, as well as structural similarity index
measure (SSIM) [60]. SSIM is a measure for assessing the perceived similarity between images,
which we here compute between the original and transformed dataset. The lower this SSIM value,
the more different the datasets; a low SSIM metric is expected to correlate with higher privacy.
From Table 2, it appears our proposed method (A-D), just like other obfuscation methods,
degrades relD and demographic prediction performances, which is to be expected when trying to
increase privacy. Nonetheless, the proposed method generally achieves better reID performances
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Fig. 10. Comparison of (a) e-IDP and SegCAM-IDP, (b) black shape-inpainting and box-inpainting for
SegCAM-IDP, and (c) color shape-inpainting and box-inpainting for SegCAM-IDP, in terms of relD mAP
performances (first row) and gender F1-scores (second row), for Market1501 in parameter setting A.

than traditional obfuscation methods and noticeably better performance than existing pixel-level
IDP mechanisms on both Market1501 and RAP, with only face blackout performing similarly
well. When it comes to demographic predictions on these two datasets, our proposed method is
generally on-par or slightly better than other obfuscation methods. For FairFace, however, we see
our proposed method leads to worse demographic predictions than other obfuscation methods,
which might be due to the different nature of this dataset (face-only images, whereas the other two
datasets contain full-body images) or due its larger images, which might suffer less from the other
obfuscation methods at the chosen parameters. When looking at mean k-anonymity, computed
from all possible single, pairs, and triplets of quasi-identifiers in the same manner as in the previous
section, our proposed method shows a successful increase of ki, ka., and ks, over the original data,
with significantly better k values than other obfuscation methods. It also clearly appears that our
proposed method leads to the lowest SSIM values, implying our method introduces larger visual
data distortions while retaining acceptable data usability.

5.5 Effect of SegCAM-IDP

This section summarizes the results of our obfuscation approach combining body part segmentation
with CAM. For the sake of brevity, we focus on parameter setting A (high color quantization) for
this portion of our analysis, as it allows for the lowest privacy budgets ¢, as shown in previous
sections; other parameter settings are expected to behave in a similar fashion. Figure 10(a) compares
SegCAM-IDP with ¢-IDP in terms of reID and gender classification performances after obfuscation.
From these graphs, we can observe a minimal decrease in relD performance and a minimal increase
in gender classification performance when noise distribution happens non-uniformly, for any given
privacy budget ¢. Given that the CAM information is obtained via a gender-classifying CNN, this
behavior of SegCAM-IDP is in line with our prior expectations, although the difference with regular
e-IDP is not very significant.

This motivates the use of our alternative methods, which use inpainting to further exploit the
body-part-segmented CAM information. When inpainting gender-important body parts black or
with their average color, as in Figure 10(b) and (c), respectively, it appears relD performances are
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Table 3. Comparison of the Proposed ¢-IDP and SegCAM-IDP Mechanisms on Market1501 When ¢ = 100

relD Gender | Age Anonymity
Method Privacy ¢] || mAPT | Rank-17 F17 F17 || k1T | k2. T | k3. T || SSIM|
Original (SOTA [62]) - 98.3% 98.0% 92.7% 41.9% 197 50 13 1.000
&-IDP (A) 100 0.6% 0.1% 55.7% 23.4% || 748 | 748 | 747 0.020
SegCAM-IDP (A) 100 0.6% 0.1% 55.5% 23.3% || 745 | 739 | 734 0.021
+ inpainting black box 100 3.4% 1.7% 84.8% | 27.2% || 679 | 613 | 552 0.017
+ inpainting black shape 100 5.9% 3.6% 83.0% | 32.2% || 660 | 579 | 506 0.025
+ inpainting color box 100 15.2% 11.1% 87.0% | 32.5% || 440 | 253 | 142 || 0.102
+ inpainting color shape 100 16.5% 11.9% 86.3% | 34.1% || 453 | 269 | 156 0.103

Italics denote SOTA values.

generally lower for a given privacy budget ¢. The same does not apply to gender classification
performances, which incur small drops as the privacy budget ¢ decreases but remain much more
stable than when using a regular ¢-IDP mechanism, even when the privacy budget ¢ is set as low as
100, as highlighted in red on the graphs. These results suggest that this inpainting process, which
generalizes the visual information in pedestrian images, might be an effective way to reduce the
singularity of visual characteristics, making images unsuitable for person relD, while preserving
general visual characteristics necessary for attribute recognition tasks.

Our proposed SegCAM-IDP mechanism exhibits its most interesting behavior at low privacy
budgets; Table 3 briefly compares this mechanism with ¢-IDP when ¢ = 100. While the original
e-IDP mechanism essentially destroys all information in images at such a low privacy budget, with
performances across tasks reaching chance-level, SegCAM-IDP with inpainting manages to retain
acceptable gender classification and higher age classification performance. The type of inpainting
used has a limited effect on attribute classification performances, but does impact reID performance,
which is lowest with black box-inpainting, and then increases when using black shape-inpainting,
color box-inpainting, and color shape-inpainting, in that order. Regardless of the type of inpainting,
SegCAM-IDP achieves higher k-anonymity levels and lower SSIM values than the original data.
These values are in line (or better) with those observed at identified tradeoff points for the ¢-IDP
mechanism, which we reported in Table 2.

Our results suggest that the proposed SegCAM-IDP mechanism with partial inpainting can
provide meaningful obfuscation and is a valid alternative to the regular e-IDP mechanism for
applications where it is desirable to collect demographic information from pedestrians. We here
focused specifically on the gender classification task, as it is less computationally expensive to
obtain CAM information for the gender classification task than for the reID task. This limitation in
our work leaves room for further work that instead explores the effect of using CAM information
from the relD task.

5.6 Subjective Evaluation of Images after e-IDP

We include samples from e-IDP-protected datasets under different parameter settings and different
privacy budgets ¢ in Figure 11. The previously identified tradeoff points are highlighted with a red
border. Both the dimensionality reduction and the actual differentially private mechanism affect
the visual aspect of images. Images under higher pixelization degrade faster as the privacy budget
¢ decreases, whereas higher color quantization streamlines color regions and appears to increase
robustness to noise. Tradeoff point images are undoubtedly close to their original, especially
when compared side-by-side, but do appear to successfully mask fine-grained information about
pedestrians, which are reduced to their general color and shape information. Visually, it appears the
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Fig. 11. Visual effect of e-IDP on example images from Market1501 (left) and RAP (right). The bottom left
image is the original. Images at the tradeoff points selected in Table 2 are lined with a red frame.

selected tradeoff points do indeed offer a reasonable tradeoff between performance and leakage of
private information. Due to the higher privacy budgets ¢, the tradeoff points for RAP (on the right)
appear to offer slightly less visual obfuscation than those for Market1501 (on the left). Provided one
is willing to further sacrifice data utility, a higher privacy protection level can be achieved with
e-IDP by selecting a lower privacy budget e. When comparing with traditional obfuscation methods
from Figure 4, our proposed method shows a stronger distortion of pedestrians’ visual features.

We additionally conducted a user survey through Yahoo! Crowdsourcing! to evaluate the per-
ceived acceptability of images protected through our proposed ¢-IDP mechanism in two different
scenarios. Participants were presented with one of the text and image introductions shown in
Figure 12. We considered two different smart city scenarios: (1) the public city administration
wishes to collect data for infrastructure improvements, and (2) a private transport company wishes
to collect data to improve their services. After confirming they understood the purpose of the
survey, participants were asked for their gender (male, female, other) and age group (18 or less,
19-30, 31-45, 46-60, 61, or more). The survey was conducted in Japanese.

Each participant was asked to judge the acceptability of five e-IDP-noised images in a binary
manner; example images are included under Figure 13. A total of 80 such images were prepared,
where 4 original images were noised under 4 different parameter settings and 5 different privacy
budgets ¢ each; these privacy budgets are centered around the previously identified tradeoff points.
Each image was shown to 20 different participants, 10 per scenario; this implies each combination
of dimensionality reduction parameters and privacy budgets was evaluated by 40 individuals per
scenario (10 respondents X 4 distinct images). A total of 320 people participated in the online survey,
160 per scenario. Participants were compensated 10 JPY for their participation. The results were

Ihttps://crowdsourcing.yahoo.co.jp/.
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(a) Public city administration

“We are a team of researchers interested in evaluating
subjective privacy perceptions. We are developing a system
to improve the privacy of data captured by cameras for
smart city projects. Assume the images you are about to see
are collected by the public city administration to inform and
improve urban planning decisions. By sharing your data,
you can expect lower congestion throughout the city and
better availability of pedestrian crossings and public
benches. The city administration also intends to use this
data to develop a website where you can check the number

of people at specific locations in real-time.”

L. Maris et al.
= ﬂ"l ’

(b) Private transport company

“We are a team of researchers interested in evaluating
subjective privacy perceptions. We are developing a system

to improve the privacy of data captured by cameras for
smart city projects. Assume the images you are about to see
are collected by a private transport company to inform and
improve its services. By sharing your data, you can expect

lower congestion when using busses or trains and better
availability of seating options for busy stops. The transport
company also intends to use this data to improve its route
planning app, so you can use it to find routes that are less

busy in real-time, allowing you to travel more comfortably.”

Fig. 12. Survey introduction scenarios.

Original

Fig. 13. Example images shown to survey participants. Participants were asked the following question:
“Assume you are the person in the photo. The camera protects the photo on the left and transforms it into the
image on the right. Would you feel comfortable if this noised image was collected by a public camera?”.

collected from 226 male respondents and 94 female respondents, with 13 of them in the 19-30 age
range, 107 in the 31-45 age range, 159 in the 46-60 age range, and 41 in the 61 or more age range.

Figure 14 shows the number of participants that selected “Yes, I am comfortable with this level of
privacy protection,” per parameter and privacy setting. Results confirm participants are generally
more satisfied with higher privacy protection (lower privacy budgets ¢), yet the previously identified
tradeoff points (the middle bar in each graph) appear generally sufficient to satisfy user’s concerns,
with over half of the respondents saying they are satisfied with the provided privacy protection.
This is on par with the number of positive responses at the lowest surveyed privacy budgets ¢, and
noticeably better than the number of positive responses at the highest surveyed privacy budgets e,
which suggests our proposed e-IDP method and the identified tradeoff points are generally able to
provide satisfactory perceived privacy protection. Responses from people presented with the public
city administration and private transport company scenarios appear to vary rather similarly. A
two-sample t-test between the two groups, with null hypothesis that they have equal means, yields
a p-value of 0.826, which does not suffice to reject the null hypothesis (for any reasonable «). This
suggests there might be no statistically significant difference between the way participants view
their privacy in the public city administration and private transport company scenarios.
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Fig. 14. Number of respondents selecting they were satisfied with the level of privacy protection, per parameter

setting and privacy setting, for each of the two respondent groups.

6 Discussion

This section explores the use of empirical data sensitivity, of an alternate noising mechanism, and
of an alternate anonymity measure.

6.1 On Sensitivity

For a given data format (i.e., image size and valid color ranges), data sensitivity Af in the sense of
differential privacy is defined as the maximum difference that can be observed between two images.
Throughout this study, we have worked under the worst-case assumption regarding these sensitivity
values, i.e., we have assumed the maximum difference between two images is the difference between
an image that is entirely white (every pixel’s RGB values set to 0) and an image that is entirely
black (every pixel’s RGB values set to 255). One could argue this very conservative assumption is
likely to overestimate the actual sensitivity of input images to the privacy mechanism, as a number
of valid RGB images are rather unlikely to appear in realistic image data.

To explore this aspect, Table 4 compares the theoretical upper bounds on sensitivity we have used
with the empirical sensitivities of the studied datasets. The latter are computed as the maximum
pairwise difference between all images in the dataset. From this table, it appears there is a very
significant difference between theoretical and empirically computed sensitivities A f. This distinction
is most marked in parameter setting D (no dimensionality reduction) and becomes less intense as
color quantization is increased, with the lowest difference between sensitivities under parameter
setting A. This suggests the universe of realistic images is much smaller than the universe of valid
RGB images, and that reducing the redundancy of the latter (through higher color quantization)
may help reduce this gap. It also appears the difference between sensitivities, which is reported
in the last column, remains relatively similar across datasets within a given parameter setting,
suggesting there may be a dataset-independent way of considering this issue.

As a consequence of the sensitivity differences, we may have used higher noise levels than
necessary to provide differential privacy on the data, as the noise addition process described in
Equation (2) is directly proportional to data sensitivity and inversely proportional to ¢. As such, the
¢ values throughout this article may actually be overestimated by the factor reported in the last
column of Table 4. In these circumstances, one may prefer to work with empirical sensitivity rather
than theoretical sensitivity, but this approach has its own drawbacks. First, empirical sensitivity
is difficult to compute, as it relies on comparing every pair of images, which is computationally
expensive already for the datasets we used. Second, relying on empirical sensitivity rather than
theoretical sensitivity implies a privacy risk: If future data does not fit within the data range of
past data (on which the empirical sensitivity was computed), the differential privacy mechanism
will fail to properly calibrate noise to sensitivity. This weakens the associated privacy guarantee,
which may not be accurately reflected anymore by the privacy budget ¢. Provided these issues
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Table 4. Differences between Theoretical and Empirical Sensitivity, per Parameter Setting and Dataset

Parameter setting Dataset | Theoretical Af | Empirical Af | Difference factor
Market 221,184 57,193 X 3.9
(A) High color quantization RAP 221,184 62,445 X 3.5
FairFace 1,354,752 447,858 X 3.0
Market 702,464 30,443 X 23.1
(B) Mixed pix. and color quant. | RAP 702,464 33,544 % 20.9
FairFace 4,302,592 251,343 X 17.1
Market 1,728,000 15,110 X 114.4
(C) High pixelization RAP 1,728,000 16,975 X 101.8
FairFace 10,584,000 131,570 X 80.4
Market 135,834,624,000 3,919,222 X 34, 658.6
(D) No pix. nor color quant. RAP 135,834,624,000 4,396,641 X 30,895.1
FairFace | 831,987,072,000 34,440,168 X 24,157.5

can be addressed, by designing a more efficient but sound way to estimate an upper bound on the
empirical sensitivity, we believe this opens up a promising direction for future work.

6.2 On Other Noising Mechanisms

Our proposed e-IDP mechanism relies on Laplacian noising, as detailed in Section 3.1. The most
common alternative to the Laplacian mechanism is the Gaussian mechanism [19], which can-
not provide pure ¢e-differential privacy but instead provides a relaxed guarantee, referred to as
approximate differential privacy or (¢, §)-differential privacy. This additional § parameter represents
the failure probability of the mechanism: With probability 1 — §, the mechanism satisfies pure
e-differential privacy; with probability §, it provides no privacy guarantee at all. The Gaussian
mechanism can be extended to the image domain analogously to our previous mechanism.

Definition 6.1 (&, §)-IDP). A randomized mechanism M gives (¢, §)-IDP if for any two images i
and j of same dimension, and for any possible output R C Range(M):

Pr[M(i) € R] < exp(e) Pr[M(j) € R] +6. (8)

The Gaussian mechanism can provide such a guarantee [19] provided M calibrates random noise
n to some variance value o2, which is related to the £-sensitivity A, f of function f:

M(x) = f(x) + n, where n ~ Gaussian(0, o*). 9)

However, the classical Gaussian mechanism is unable to define this value o for cases where
& > 1, which are inevitable when working with high-dimensional images. The analytic Gaussian
mechanism [7] lifts this restriction by calibrating noise through an optimization problem involving
the Gaussian distribution’s cumulative distribution function ®. Analogously to our ¢;-sensitivity
definition, we define the #,-sensitivity of RGB images of width w and height h, with optional
pixelization determined by b and optional color quantization determined by c, as:

3 2
Aof = Z—:((z—i—l) ) . (10)

With this relaxed, approximate IDP definition, we can compare the effect of the Laplacian and
the Gaussian mechanism on our target tasks; for the sake of brevity, we only include results for
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Fig. 15. Comparison of Laplacian ¢-IDP (dark line) and Gaussian (¢, §)-IDP (light line) on Market1501, for the
relD (first row) and gender prediction tasks (second row). Note the different scales on the x-axes.
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Fig. 16. Comparison of noising mechanisms on an example image from Market1501 in parameter setting A.

Market1501 under Figure 15. Privacy budgets ¢ are in line with those evaluated previously, and the
Gaussian mechanism’s failure probability & is set to 0.001.

From these graphs, it appears using Gaussian noise is generally less desirable for performances,
as settings B through D result in lower reID mAP and gender prediction F1-scores. The Gaussian
mechanism outperforms the Laplacian mechanism in setting A, where it is able to offer a significant
¢ decrease for the same task performance. However, the Gaussian mechanism only guarantees ap-
proximate differential privacy, i.e., does not provide any privacy guarantee with a 0.001 probability,
whereas the Laplacian mechanism cannot fail to provide a privacy guarantee; this makes it difficult
to directly compare ¢ values. Visualization of the noised images under both mechanisms in setting
A, in Figure 16, confirms this intuition, as images noised under the Gaussian mechanism appear
less protected than images noised under the Laplacian mechanism, for the same ¢.

In this study, we chose to work with the Laplacian mechanism for its stricter privacy definition;
we acknowledge the use of other noising mechanisms may be beneficial for performances on
IDP-protected data. Given the limited work on IDP mechanisms, and the discrepancies in how dif-
ferential privacy mechanisms define their privacy guarantees, we believe more in-depth mechanism
comparisons to be a good direction for future work in this domain.

6.3 On Other Anonymity Measures

Being one of the most prominently studied privacy metrics, we here used k-anonymity to charac-
terize the anonymity of IDP-protected images. Several metrics have aimed to extend k-anonymity
to better characterize anonymity, one of them being [-diversity [45]. It measures the variability of a
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Algorithm 2: Computing the Image [-Diversity of a Dataset (Modified from Algorithm 1)

Require: (...)
Require: Sensitive attribute SA C A
2: for i < 1 to length(EQ) do
3: EQS; «— {} > Initialize an empty set for each equivalence class.
12: for i « 1 to length(EQ) do > For each equivalence class,
13: if EQ; C V then if it is represented by the current identity,
14: EQS; « EQS; UV[SA, %] their sensitive attribute values are appended.
> [ is the size of the smallest sensitive attribute
15: | < minimumExcludingZero(size(EQS)) value set across equivalence classes, excluding
16: return [ entirely unrepresented equivalence classes.

given sensitive attribute SA: The higher this variance [ across equivalence classes, the lower the
vulnerability to background knowledge attacks for that sensitive attribute. We can derive a (single
sensitive attribute) image I-diversity algorithm from our k-anonymity algorithm; we include the
necessary modifications to our previous algorithm under Algorithm 2. It can be extended to multi
sensitive attribute settings; however, as the number of equivalence classes grows exponentially
with the number of quasi-identifiers, which grow with the number of sensitive attributes in multi-
sensitive attribute settings [45], the number of equivalence classes quickly becomes intractable and
unpractical to compute. As such, we limit our analysis to single sensitive attribute [-diversity. Anal-
ogously to the quasi-identifier agnostic approach for k-anonymity, we propose a sensitive attribute
agnostic approach for [-diversity, and report average [-diversity for any sensitive attribute and any
single, pair, triplet of quasi-identifiers; we refer to these metrics as Iy, I*, and I3*, respectively.
The [-diversity values obtained on Market1501, as reported in Figure 17(a), follow a similar
trend as k-anonymity values. Lower privacy budgets ¢ increase the [-diversity values, suggesting
the e-IDP mechanism successfully increases the diversity of observable sensitive attribute values.
Considering a larger set of quasi-identifiers, i.e., computing l,* or l3* over [;*, leads to lower
diversity values [. This is a consequence of the increase in equivalence classes, all of which need
to feature diverse sensitive attribute values for I to remain high, which gets increasingly difficult
with more equivalence classes. The I-diversity values obtained on RAP and FairFace, observable
in Figure 17(b) and (c), respectively, are less informative. RAP shows little variation in [-diversity
values, regardless of the privacy budget . We attribute this behavior to the fact RAP has over 100
attributes, almost all of which binary; by averaging I-diversity values across so many sensitive
attributes, we may fail to capture their finer variational trends. FairFace on the other hand shows
maximal [-diversity for all privacy budgets ¢. This is due to the dataset being balanced by design,
i.e., already offering maximal diversity in all its attributes, regardless of privacy budgets ¢.
Further extensions to k-anonymity and [-diversity have been proposed, e.g., t-closeness [39],
which measures the distribution of sensitive attributes across equivalence classes. Given the low
relevance of I-diversity on image data with binary attribute labels observed from our results, the
direct applicability of t-closeness or further extensions on such image data remains uncertain, and
may warrant further research on the relationship between these metrics and differential privacy’s e.

7 Conclusion

Visual data is ubiquitous in the current data landscape and often used in smart city research and
applications, due to the common availability and high potential of video cameras. Despite this,
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Fig. 17. Mean I-diversity as computed on Market1501, RAP, and FairFace, after e-IDP in parameter setting

(A), high color quantization. All possible single, pairs, and triplets of quasi-identifiers and all possibles single

sensitive attributes were considered and averaged to obtain these lines, denoted by [y, I, and Is., respectively.

Note that RAP includes too many attributes to be able to compute a I3, value in reasonable time, and that

FairFace contains too few attributes to compute anything higher than a I, value.

methods that can provide privacy guarantees to affected citizens while retaining practical data
utility remain limited, which hurts the social acceptance of IoT-based smart city systems. We
previously introduced a strict IDP mechanism that allows system operators to quantify and control
the privacy leakage of such systems, and we here extend its analysis to two additional datasets
for both cross-camera person relD and attribute prediction tasks. Through extensive experiments,
we confirm our proposed mechanism achieves better obfuscation than existing methods while
retaining acceptable utility for the target tasks, at practical tradeoff points we have identified for
the Market1501, RAP, and FairFace datasets.

By design, increasing privacy, or limiting information leakage, comes at the expense of utility, or
information itself. While our proposed methods can outperform traditional obfuscation baselines
at certain tradeoff points, privacy budgets ¢ and thus private information leakage remain non-
negligible. Nevertheless, provided smart city system operators can identify the privacy-utility
tradeoff best suited to their data and goals, we believe our IDP mechanisms valuable for storing
visual data with a reduced privacy footprint. Our findings confirm that reID images protected
through differential privacy can remain valuable as a whole but are of limited use in fragments, a
key property which we expect especially useful in distributed IoT settings, where data leaks can be
expected to concern subsets of data.

This article additionally introduced a novel IDP mechanism, which utilizes body-part information
together with CAM models to locate and rank areas within images in terms of their importance
to gender identification, and applies noise and/or inpainting accordingly. Our experiments show
that this process is able to preserve demographic information while stripping images of a majority
of their person relD potential. We have also introduced a new way to empirically evaluate the
k-anonymity of a set of images, and report its behavior on the considered datasets. Our experiments
confirm that data protected by our differential privacy mechanisms results in higher anonymity
levels k than unprotected or traditionally obfuscated data. We expect the introduced IDP and image
k-anonymity methods to be useful for the public release of image datasets and the use of video
cameras in smart city systems, assisting data owners and system operators in choosing privacy
budgets fit to their privacy ambitions and desired applications.
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Appendices
A Performance

We here include average runtimes of the different components of our system, reported under Table
A1, using images from Market1501. These measurements were made on a machine with an Intel
Core i9-9900K CPU @ 3.60 GHz and an NVIDIA GeForce RTX 2080 GPU. From these measurements,
it appears the computational load is primarily on training the reID model, and, to a lesser extent,
on training the attribute classification models. We do not propose these models and believe they
can be swapped out for other, similar models, that can be selected for computational efficiency.
These models can be trained punctually, at spaced-out points in time, on a central server that
only has access to the protected images, so as to lessen the computational cost of training. The
privacy components of our system, in italics, which are our main contribution, do not require
a training phase and have rather low computational cost. Figure A1 confirms that the runtime
performances of most of the different components do not vary much depending on the chosen
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Table A1. Average Wall Clock Times on Market1501, Separated by Train/Testing
Training Testing Testing
Component (12,936 images) (3,368 images) (1 image)
e-IDP mechanism (CPU) - 1.83 s (£8.09 ms) 0.5ms
Centroid-based reID (GPU) | 1h39min 6s (+£7.18s) 1min 19s(*1.92s) 23.5ms
Attribute recognition (GPU) | 9 min 3s (£906 ms) 2.55 s (x11.4ms) 0.8ms
k.1-anonymity computation (CPU) - 52 ms (+811 ps) 15.4 ps
k.,-anonymity computation (CPU) - 655 ms (+7.41ms)  194.5 us
k.s-anonymity computation (CPU) - 5.47 s (+48.3ms) 1.6ms
Total 1h48min 9s (+8.1s) 1min 29.6s(£2.0s) 26.6ms

(a) Varying parameter settings,
fixed privacy budget e=10000

(b) Varying privacy budgets ¢,
fixed parameter setting (A)
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Table A2. Average Wall Clock Times of SegCAM-IDP, per Component,

on Market1501

Component 3,368 images 1image
CE2P human parsing (GPU) | 1 min 42s (+493 ms) 30.3ms
CAM generation (CPU) | 6min59s(+7.1s) 124.4ms
SegCAM-IDP mechanism (CPU) | 3 min 19s (+312ms) 59.1ms
Total 12 min (+7.95) 213.8ms

—&— k*3-anonymity computation

Average wall clock times of the different components of our system when varying parameters.

parameter setting or privacy budget ¢. Model-based components (reID and attribute recognition,
in blue and orange) show a little variation between runs, which is likely due to GPU availability,
but the other components basically do not vary. The only exception to this is the e-IDP noising
mechanism itself (in green), which runs faster when working under higher levels of pixelization

(parameter settings B and C).

We also include average runtimes of our proposed SegCAM-IDP mechanism under Table A2,
using images from Market1501. The SegCAM-IDP mechanism relies on a pretrained CE2P seg-
mentation model and a pretrained CAM-ready classification model. These models are somewhat
computationally expensive to train; however, they only really need to be trained once, and once
trained, their practical use is not very resource-intensive.
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Fig. B1. Additional visualization of SegCAM-IDP (¢ = 5,000) on FairFace.

B Visuals

We do not consider SegCAM-IDP for FairFace in the main article, and instead focused our analysis
on Market1501, a full-body dataset that is suitable for more tasks. We include under Figure B1
additional visualization when applying the SegCAM-IDP approach on face data from FairFace.
We use a face segmentation model based on BiSeNet [65, 71] instead of the previous CE2P human
parsing model, which is better suited to facial data. Due to the different nature of images (square-
shaped rather than rectangular), the boxing methods (in the last two columns) tend to affect larger
parts of the images, which may have a more significant impact on data utility for demographic
predictions.
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