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Abstract—Prolonged screen use suppresses blink frequency,
increasing the risk of Dry Eye Disease (DED), visual fatigue,
and discomfort. While fixed-interval reminders offer a basic
solution, their lack of personalization can cause user fatigue, poor
compliance, and over-blinking—potentially worsening conditions
such as blepharospasm. This paper presents a real-time adaptive
feedback system that personalizes blink reminders based on recent
user behavior. The system combines clinically grounded thresholds
(**15-30 blinks per minute [BPM]**), a sliding window for trend
estimation, and randomized exponential backoff to minimize
habituation. In a pilot study with 15 participants, the system
significantly increased blink frequency compared to a no-reminder
baseline (p < 0.0001), without inducing over-blinking. Subjective
ratings showed high usability (M = 4.0), satisfaction (M = 4.4),
and perceived effectiveness (M = 4.6). These findings suggest
that adaptive, behavior-sensitive feedback offers a practical and
user-friendly approach to supporting ocular health during screen
use.

Index Terms—Blink Monitoring, Blink Reminders, Adaptive
Feedback, Eye Health, Human-Computer Interaction, Real-Time
Sensing

I. INTRODUCTION

Blinking is an essential physiological function that maintains
tear film stability and protects the eyes during visual tasks.
However, prolonged use of digital devices has been shown
to suppress spontaneous blinking, particularly during cogni-
tively demanding activities such as reading, programming, or
gaming. This suppression can reduce blink frequency to as
low as 5 blinks per minute (BPM)—well below the clinically
recommended range of 15-30 BPM——contributing to the rise
of Dry Eye Disease (DED), visual fatigue, and reduced task
performance [1].

The rise in screen time—averaging 3.2 hours daily—has
been associated with prevalent ocular symptoms such as tired
eyes (39.8%), dryness (31.5%), discomfort (30.8%), and strain
(30.6%), affecting users during at least half of their device
use [2]. Recognizing this as a growing public health concern,
the WHO has urged countries to integrate eye care into national
health strategies [3]. In alignment, the present system supports
daily prevention by providing adaptive, real-time feedback to
sustain healthy blink behavior during screen use.

To mitigate blink suppression, prior systems have imple-
mented fixed-interval blink reminders. While these approaches
can temporarily improve blink frequency, they often operate

independently of users’ real-time physiological states. As a
result, reminders may be poorly timed or overly frequent,
contributing to annoyance, user fatigue, and reduced compliance
over time. Furthermore, many existing interventions focus
solely on increasing blink rates, overlooking the potential
consequences of over-blinking—which can cause discomfort
or aggravate conditions such as blepharospasm, a neurological
disorder characterized by involuntary eyelid closure and ocular
strain [4].

**Maintaining an optimal blink rate is not only a matter
of comfort—it is closely tied to long-term ocular health,
cognitive performance, and digital wellbeing.** **While
previous systems have addressed blinking from a reactive or
rule-based perspective, there remains a need for proactive,
behavior-sensitive feedback that adapts to individual patterns
in real time.**

In response, we propose a context-aware adaptive feedback
system designed to promote healthy blink behavior during
screen-based tasks. Rather than relying on pre-set intervals,
the system continuously monitors blinking through a webcam
and adjusts reminder timing based on real-time trends. It
integrates: (1) a sliding window mechanism for estimating
blink frequency over a 1-minute window, (2) threshold-based
decision logic grounded in clinical norms (15-30 BPM), and
(3) a randomized exponential backoff strategy that delays
subsequent prompts to minimize habituation and maintain user
attention.

**Although the individual components (e.g., sliding window,
thresholds) may appear simple, their combined use in a
dynamic, adaptive loop provides a novel balance between
responsiveness and user tolerance—contributing a lightweight,
personalized approach to blink regulation without requiring
intrusive hardware or complex gaze tracking.** **This framing
shifts the focus from one-time blink reminders to continuous
interaction support, making the system relevant to broader
applications in digital health and attention-aware interfaces.**

This study explores how low-cost, non-intrusive sensing—via
standard webcams—can power personalized interventions.
Unlike gaze tracking or eye movement analytics, our method
focuses on blink frequency, offering a direct and interpretable
metric for ocular wellness. The system builds on prior work in
blink detection [5] and real-time adaptive sensing [6], offering a



lightweight framework for integration into everyday computing
environments.

Research Aim: This study investigates whether combining
passive, real-time blink sensing with adaptive feedback can
help sustain healthy blink patterns during screen use—without
causing user discomfort or disrupting workflow.

We evaluated the system through a pilot study involving 15
participants, each completing a screen-reading task under one of
three conditions: no reminder (baseline), fixed-interval reminder,
and adaptive feedback. The results showed that the adaptive
system significantly increased blink frequency compared to
the baseline, while avoiding the over-blinking observed in the
fixed-interval condition. Subjective ratings further indicated
high usability (mean = 4.0, SD = 0.71), satisfaction (mean
= 4.4, SD = 0.55), and perceived effectiveness (mean = 4.6,
SD = 0.55), suggesting that adaptive feedback offers a more
effective and user-friendly approach to supporting healthy blink
behavior during prolonged screen use.

The rest of this paper is organized as follows: Section II
reviews related literature on blink regulation and adaptive
sensing. Section III describes the system architecture and design
logic. Section IV presents experimental results, and Sections V
and VI discuss findings, limitations, and future directions.

II. RELATED WORK

Blink rate (15-30 BPM) declines during screen use, increas-
ing DED and fatigue risk [7]-[9]. This section reviews blink
interventions, their limitations, and related adaptive wellness
technologies.

A. Digital Interventions for Blink Regulation

Several digital interventions aim to counter blink reduction.
Ashwini et al. [7] used fixed reminders (8/min), improving
blink rates and DED symptoms—with lasting effects. Even the
control group (1/min) showed modest gains.

Furqan et al. [10] used a decoy technique based on Nudge
Theory. Although some users’ blink patterns changed, the
effects were not statistically significant.

Despite their benefits, fixed-timing approaches ignore real-
time physiological changes and risk causing over-blinking or
fatigue, which may worsen conditions like blepharospasm [4].

Tsubota et al. [11] introduced Maximum Blink Interval
(MBI)—the longest time one can keep their eyes open—as a
personalized metric for blink interventions and a passive DED
diagnostic tool, validated through a mobile app.

Together, these studies highlight the potential of blink
interventions, while also revealing a need for solutions that are
both adaptive and behaviorally sensitive.

B. Adaptive Feedback in Wellness Systems

Adaptive systems that tailor feedback to real-time behavior
have shown effectiveness in wellness applications [12], [13].
However, existing approaches lack physiological integration
and are not intended for blink regulation.

The present work extends prior efforts by incorporating blink-
specific sensing and adaptive feedback. It introduces three key
innovations:

o Real-time blink detection using webcam-based Eye Aspect
Ratio analysis to monitor physiological states.

« Sliding window trend estimation to smooth blink fluctua-
tions and avoid responses to outliers.

o Randomized exponential backoff to minimize user fatigue
and reduce habituation to feedback.

By targeting both under- and over-blinking, our system offers
a lightweight, adaptive solution for ocular wellness during
screen use. Unlike fixed-interval methods, it tailors feedback
to individual blink patterns, enabling more precise and context-
aware intervention.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section describes the system architecture and logic for
adaptive feedback based on real-time blink monitoring, and
explains how the system interacts with users.

A. Overview and Architecture

The system uses a webcam to capture eye activity, which
is analyzed in real time using the Eye Aspect Ratio (EAR)
algorithm [5] to detect blinks. Blink frequency is monitored
using a sliding window of recent activity, and based on this
information, the system makes decisions to either prompt the
user or defer intervention.

As shown in Fig. 1, the control logic responds dynamically:
when blinking behavior deviates from clinically healthy norms
(15-30 BPM), a visual reminder is issued, and the timer
resets. If blinking remains within the target range, the system
applies an exponential backoff mechanism to space out future
reminders—helping reduce user fatigue and habituation.

Detect Blink using EAR ‘

Calculate Avg Blink Rate (B_avg) <——{ Update Sliding Window |

Check if B_avg
<150r230

’ Reset Interval (I, = 4s) ‘

Extend Interval
(Exponential Backoff +
Jitter)

End

Fig. 1. Control flow of the adaptive feedback system.

B. Real-Time Blink Estimation and Decision Logic

Blink behavior is estimated using a 60-second sliding window
(three 20-second segments, updated every 20 seconds) to
smooth fluctuations while remaining responsive. This approach
aligns with prior work on real-time, behavior-aware feed-
back [14].



The window size was selected based on pilot testing, which
evaluated 1-6 intervals. A three-interval (1-minute) window
offered the best balance of stability and responsiveness, aligning
with the clinical blink range of 15-30 BPM (=5-10 blinks per
20 seconds).

The average blink rate over the window is computed as:

t
1
Bavg = I § Bz (1)
w i=t—W+1

where:

o W = 3: Number of intervals in the window

o B;: Blink count in the i 20-second segment

The system compares B,y against a clinically accepted
blink rate range of 15-30 BPM. If the average falls outside
this range, a visual reminder is triggered, and the reminder
interval is reset to a base value Iy = 4 seconds. This value
was selected through pilot testing to ensure that reminders are
frequent enough to prompt action, but not so frequent as to
cause annoyance.

If the blink rate remains within the target range, the system
applies a randomized exponential backoff strategy to delay the
next reminder, helping to reduce habituation:

if Bavg ¢ [Tmim Tmax]
otherwise

IOa
Tii1 = 2
i {min(2[t + J, Lnax), &

where:

e Iy = 4s: The base interval used when blink behavior is
outside the healthy range.

o Iax = 60s: The maximum reminder delay was set based
on pilot testing, which found that delays over 60 seconds
diminished user awareness and reduced blink intervention
effectiveness.

e J~U(0,Inax — Ip): A uniformly sampled random jitter
used to add variability.

Jittered exponential backoff, capped at I,,,,xintroduces timing
variability to prevent habituation by making feedback less
predictable and more salient.

Algorithm 1 outlines the system’s runtime logic, which
continuously monitors blink data and adapts reminder timing
based on physiological thresholds.

C. Implementation

The adaptive blink reminder system was implemented in
Python using the PyQt6 framework. It ran on a laptop with a
13th Gen Intel Core i7-1355U (1.70 GHz) and 16 GB RAM,
and was tested in a quiet, controlled indoor setting.

To support real-time monitoring, the system displayed blink
rate using a semicircular gauge (Fig. 3) with a central numeric
value and a color-coded arc for instant interpretation.

The arc was divided into four regions:

o Red (left): Too low (<15 BPM)
e Green: Healthy (15-25 BPM)
« Yellow: Elevated but acceptable (26-30 BPM)

Algorithm 1 Adaptive Feedback Algorithm for Real-Time
Blink Regulation
1: Initialize: W = 3, Iy = 4, Inax = 60, Thin = 15, Tnax =
30
2: Initialize: I; < I, time interval index ¢ < 1
3: while system is active do
4 Wait for I, seconds

5 Record blink count B; during current interval
6: if i > W then 4

7: Compute Bayg < 37 2-7—; w41 Bj

8 if Bye < Tin OF Bayg > Tinax then

9: Liv1 < Iy > Trigger immediate reminder
10: else

11: Sample J ~ Uniform(0, I ax — Io)

12: Ii-i—l — mm(QIz + J, Imax)

13: end if

14: end if

15: 14—1+1

16: end while

Fig. 2. Illustration of a participant using the system during the experiment.

o Red (right): Excessive (>30 BPM)

This intuitive design enabled users to self-regulate blink
behavior without interrupting tasks.

B

Fig. 3. Real-time blink rate feedback gauge showing numeric and color-coded
status.

In addition to the gauge, the system employs popup notifica-
tions to deliver adaptive feedback when blink behavior deviates
from the recommended range. As shown in Fig. 4, reminders
are triggered based on current blink status to facilitate real-time
behavioral correction.

IV. PILOT STUDY RESULTS

This section reports findings from a pilot study evaluating
the adaptive blink feedback system using both quantitative
(blink frequency) and qualitative (user feedback) measures to
assess its impact on blink behavior and user experience.



(a) Low blink rate detected

(b) Healthy blink rate

(c) Excessive blinking detected

Fig. 4. Visual reminders shown on the monitor in response to (a) low, (b) healthy, and (c) excessive blink rates.

A. Participants and Experimental Setup

Fifteen participants (12 males, 3 females; M, = 29.4,
SD = 4.5) completed a five-minute screen-based reading task
in a controlled laboratory setting. To ensure consistency across
participants and conditions, blink activity was segmented into
seven fixed intervals per participant, yielding 105 blink samples
in total.

All participants reported normal or corrected-to-normal
vision and an average daily screen time of over 4 hours (SD
= 1.6), reflecting habitual use of digital devices.

Participants were randomly assigned to one of three groups
(n = 5 each): (1) Baseline with no feedback, (2) Fixed-
Interval reminders triggered below 15 BPM, and (3) Adaptive
reminders based on real-time, context-aware blink analysis.

In the adaptive condition, participants could modify the base
reminder interval (default: 4s); only one selected 6s. Blink
activity was recorded using a 1920x1080 webcam at 30 fps
and detected in real time via the validated, non-intrusive Eye
Aspect Ratio (EAR) method [5].

After completing the reading task, participants in the
Adaptive group completed a questionnaire evaluating usability,
perceived effectiveness, and interface clarity using a 5-point
Likert scale. Feedback from other groups was not collected, as
the study focused on assessing the performance of the adaptive
feedback mechanism.

B. Blink Rate Trends Across Conditions

To analyze blink trends, raw blink counts (20s intervals) were
processed into progressive 1-minute averages using a sliding
window of size three. This smoothing technique helped identify
trends while mitigating sensitivity to short-term fluctuations.

Fig. 5 illustrates the distribution of blink rates across
conditions. The adaptive system maintained values more
consistently within the clinically recommended range (15-30
BPM), whereas the baseline condition showed rates pre-
dominantly below 15 BPM, and the fixed-interval reminder
condition frequently exceeded 30 BPM—suggesting potential
overcompensation.

To improve transparency and verifiability, Table I presents
the descriptive statistics for each group. These include the
minimum, 25th percentile (Q1), median, 75th percentile (Q3),
and maximum blink rates. Providing these numerical values
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Fig. 5. Blink rate distribution across all conditions.

complements the figure and allows a clearer understanding of
the distributions.

TABLE I
DESCRIPTIVE STATISTICS OF BLINK RATES ACROSS CONDITIONS (BPM)
Condition Min | Q1 | Median | Q3 | Max
Baseline (No Reminder) 0 2.0 4.0 6.0 12
Fixed-Interval Reminder 10 15.0 17.0 20.0 29
Adaptive Reminder 4 6.0 10.0 15.0 30

C. Statistical Comparison

Given the small sample size and non-normal distribution of
blink rates, we employed non-parametric statistical methods.
A global Kruskal-Wallis H test was first conducted to
assess overall group differences, yielding a significant result
(H = 56.57, p < 0.0001), which justified further pairwise
comparisons.

To confirm the appropriateness of these tests, we assessed the
assumption of homogeneity of variance using Levene’s Test,
which indicated no significant differences in variances across
conditions (p = 0.19). As such, the use of non-parametric
methods was deemed valid.

Post-hoc analysis was conducted using pairwise
Mann-Whitney U tests. To control for multiple comparisons,
we applied a Bonferroni correction that included the



Kruskal-Wallis H test in the count of comparisons
(o = 0.05/4 = 0.0125). All three comparisons remained
statistically significant under the corrected threshold, as shown
in Table II.

TABLE 11
PAIRWISE MANN-WHITNEY U TEST RESULTS WITH
BONFERRONI-ADJUSTED P-VALUES

Comparison U Adj. p-value
Baseline vs Adaptive 161.0 < 0.0001
Baseline vs Fixed-Interval 45.5 < 0.0001
Adaptive vs Fixed-Interval | 296.5 0.0009

To estimate the magnitude of differences, we computed
Cliff’s Delta (§), a rank-based effect size measure. All values
indicated large effects (|6| > 0.474), suggesting practical
relevance (Fig. 6). However, we acknowledge that Cliff’s Delta
assesses distributional dominance but does not directly reflect
how close each group’s blink rate was to the clinical target.

Cliff's Delta Effect Sizes Across Conditions

- Negligible (< 0.147)
0.0 Small (< 0.33) 4
--= Medium (< 0.474)
=== Large (= 0.474)
-0.2
@
© ~0.4
N
%]
e
]
£ o6 -0.52
w 0. Large
-0.8 -0.74
Large
-1.0 -0.93
Large

Baseline vs Adaptive Baseline vs Fixed-Interval Adaptive vs Fixed-Interval

Fig. 6. Clift’s Delta effect sizes for all condition comparisons.

To supplement the effect size analysis, we report median
blink rates and their deviations from the optimal clinical
midpoint of 22.5 BPM. Table III presents these values: the
Adaptive condition had a median of 15.0 BPM (deviation: 7.5),
Fixed-Interval 20.0 BPM (deviation: 2.5), and Baseline 4.0
BPM (deviation: 18.5). These deviations offer a clearer view
of practical effectiveness in maintaining the target blink range
of 15-30 BPM.

TABLE III
MEDIAN BLINK RATES AND DEVIATION FROM CLINICAL MIDPOINT (22.5
BPM)
Condition Median BPM | Deviation from 22.5 BPM
Baseline 4.0 18.5
Fixed-Interval 20.0 2.5
Adaptive 15.0 7.5

D. Subjective Evaluation

Participants in the adaptive group completed a questionnaire
immediately after the session, in the same environment. The

aim was to capture their immediate impressions regarding
system usability, feedback clarity, and perceived impact on
blink behavior.

The questionnaire included three main items: overall sat-
isfaction, usability, and perceived effectiveness in supporting
healthy blinking. Each was rated on a 5-point Likert scale (1
= strongly disagree, 5 = strongly agree). The results were as
follows:

User Ratings:

o Satisfaction: M =44, SD = 0.55

o Usability: M = 4.0, SD = 0.71

o Perceived Effectiveness: M = 4.6, SD = 0.55

In addition to numerical ratings, participants were invited to
respond to two optional open-ended questions: (1) “What did
you like about the system?” and (2) “What would you like to
improve?” These qualitative responses offered deeper insights
into user experience beyond the scope of Likert-scale items.
Key themes from the comments are summarized below:

Positive Comments:

o “I think that none of the features are unnecessary.”

e “The system helped me realize when I wasn’t blinking
enough.”

e “None.” (reported by multiple participants, indicating
general satisfaction)

Suggested Improvements (verbatim):

o “The font for the currently selected number of seconds
(for notification duration) is a little bit hard to read.”

« “Notification still blinking every x seconds when durations
were equal — felt a little distracting.”

e “Maybe a better User interface.”

o “The visual cue... may be too much information to process
in the short duration that it is displayed. Perhaps a
simplified visual cue would be better.”

o “The system assumes that the user understands the auditory
and visual cues... In the future it would be interesting if
the system leverages phenomena that induce this behavior
naturally.”

These insights validate the system’s usability and effective-
ness while also offering valuable suggestions for improving
clarity, interface design, and the timing of reminders.

V. DISCUSSION

This study explored how context-aware adaptive feedback
supports healthier blink behavior during screen use—a key
factor in preventing Dry Eye Disease (DED) and digital eye
strain. Results show that adaptive feedback increased blink rates
and maintained them within the clinical 15-30 BPM range,
avoiding over-blinking commonly induced by fixed-interval
systems.

The system’s use of a sliding window estimator and exponen-
tial backoff enabled responsiveness to short-term trends rather
than isolated anomalies, promoting smoother, more natural
blinking patterns. Unlike the abrupt changes seen with fixed
intervals, the adaptive method maintained stable regulation over
time.



**While the core logic relies on simple rules and clinically
grounded thresholds, its real-time, behavior-sensitive loop
demonstrates the feasibility of delivering adaptive support
without complex sensing or computation. This balance between
simplicity and responsiveness makes it suitable for low-cost
deployment in general-purpose computing environments.**

Statistical results supported these trends. A Kruskal-Wallis
H test showed significant group differences, and Bonferroni-
adjusted Mann—Whitney U tests confirmed large effects across
all comparisons. **We also verified homogeneity of variance
across groups using Levene’s Test (p = 0.19), which supported
the use of Mann—Whitney U tests. While the Brenner—Munzel
test could be more robust in the presence of unequal variances,
we chose Mann—Whitney U for its interpretability and com-
patibility with Cliff’s Delta. However, we acknowledge the
Brenner—Munzel method as a valuable alternative for future
work, particularly in studies with larger sample sizes or variance
heterogeneity.**

Subjective results aligned with the quantitative findings.
Adaptive group participants reported high satisfaction (4.4), us-
ability (4.0), and perceived effectiveness (4.6). They appreciated
the feedback gauge and suggested refinements to fonts, visuals,
and customization—highlighting opportunities for improved
clarity and personalization.

Still, limitations remain. The small sample (N = 15), gender
imbalance, and brief task duration limit generalizability and
long-term insights. Environmental factors—e.g., posture, light-
ing, and screen position—may also affect detection accuracy
and feedback perception.

**To move beyond fixed thresholds and general rule-
based logic, future work should investigate the integration
of machine learning or user modeling techniques to support
deeper personalization. This could enable the system to adapt to
individual blink patterns, task contexts, or user preferences over
time—enhancing engagement and long-term compliance.**
**Moreover, broader application domains such as digital
wellness, attention-aware computing, or preventive eye health
interventions may benefit from the core methodology proposed
here.**

Future studies should explore longer deployments in eco-
logically valid contexts such as remote work, mobile devices,
or VR. **As the system evolves, combining physiological
sensing with adaptive intelligence could help realize more
generalizable, user-aware feedback systems that extend beyond
the blink regulation use case.**

VI. CONCLUSION

This study presented a real-time adaptive feedback system
to encourage healthy blinking during screen use. By combining
sliding window estimation, clinically grounded thresholds,
and randomized backoff, the system delivers responsive yet
unobtrusive support for ocular wellness.

Pilot results showed increased blink frequency without
overcorrection, outperforming both baseline and fixed-interval
conditions in statistical and practical terms. User feedback

confirmed the system’s usability and acceptability, underscoring
its promise for wider deployment.

More broadly, this work advances health-supportive human-
computer interaction by demonstrating how passive sensing
can enable personalized, real-time wellness interventions. As
screen time grows, adaptive systems like this may help mitigate
visual discomfort and promote sustainable digital habits.
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