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Abstract—Yoga pose classification is critical for intelligent
environments, health, and fitness applications. This study inves-
tigates resource-efficient implementations of classification mod-
els using contrastive learning frameworks, including SimCLR,
MoCo, and BYOL. We evaluate their performance across vary-
ing levels of labeled data, focusing on accuracy, computational
efficiency, and robustness. MoCo offers a balanced tradeoff
with 87.59% accuracy at 50% labeled data, while BYOL
achieves strong results with faster inference. SimCLR, suitable
for real-time applications due to faster training, consumes more
memory and has slower inference. We apply data augmentation
and normalization in the preprocessing pipeline to enhance
generalization and address challenges like limited data and class
imbalance. These techniques improve the model’s resilience and
learning efficiency. Our findings guide scalable, energy-efficient,
user-centered yoga pose classification models for intelligent
environments.

Index Terms—self-supervised learning, contrastive learning,
yoga pose classification

I. INTRODUCTION

Yoga pose classification is rapidly evolving, with extremely
accurate implications for personal healthcare, fitness tracking,
telerehabilitation, and interactive learning systems [1], [2].
Real-time positive feedback, enhanced user engagement, and
better exercise safety are all possible through accurately
recognizing yoga poses. The capability is appreciable in
environments such as smart fitness devices, augmented reality
systems, and virtual training platforms. However, classify-
ing yoga poses presents unique challenges because poses
are complex, dynamic events that include subtle variations,
frequent occlusions, and various body configurations. These
challenges make traditional supervised learning methods
costly (in terms of time and resources) and less feasible
because they require large amounts of labeled data [3].

The need for robust yoga pose classification is growing
with the increasing adoption of intelligent systems for fitness
and wellness. Systems that detect and analyze body positions
can significantly improve user experiences and help prevent
injuries by encouraging proper form and posture. However,
there is a big problem: insufficient labeled data is available.
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Labeling large datasets for yoga poses is time-consuming and
expensive. Additionally, traditional methods, like keypoint
detection models and convolutional neural networks (CNNs),
often have trouble dealing with the variations and blocked
views that are common in yoga poses. These challenges
show the need for other methods to work well with unlabeled
data. Self-supervised learning (SSL) has become a promising
solution, allowing models to learn functional patterns without
needing labeled data. Among SSL techniques, contrastive
learning (CL) has been very successful in learning patterns
for different computer vision tasks, offering a possible way
to address the challenges related to yoga pose analysis.

CL has revolutionized SSL by enabling models to identify
and differentiate similar and dissimilar data points without
the need for labeled examples [4], [5]. SimCLR and MoCo
lead the CL frameworks with their contributions to represen-
tation learning. While mass data augmentation paired with
large batch sizes facilitates significantly robust representation
learning from high-dimensional geometries (mainly to cap-
ture subtle changes in angle) [6], it comes at a computational
cost that limits its scalability. In contrast to SimCLR, MoCo
incorporates a momentum encoder and a dynamic memory
queue, which enable training with smaller batch sizes and
reduced computational overhead [7]. There is clear evidence
that such a combined approach offers notable advantages
for applications such as yoga pose classification. A strong
alternative is BYOL, which eliminates the need for negative
samples and is particularly useful for resource-constrained
applications [6].

This study evaluates the performance of these contrastive
learning frameworks—SimCLR, MoCo, and BYOL—for
yoga pose classification, focusing on their ability to operate
efficiently with limited labeled data. In doing so, we aim to
address the unique challenges of data scarcity, computational
efficiency, and scalability. We consider the impact of prepro-
cessing strategies and look at the tradeoffs between anno-
tation cost and model performance. Meanwhile, we address
practical concerns in implementing these models in today’s
intelligent environments to provide useful suggestions for
the benefit of scholars and practitioners. By addressing these



challenges, our work advances resource-efficient yoga pose
classification and demonstrates the potential of contrastive
learning as a transformative approach in this domain.

Our study aims to provide insights into creating resource-
efficient yoga pose classification models using contrastive
learning by focusing on the following research questions
(RQ):

• RQ1: How do different contrastive learning frameworks
perform in yoga pose classification tasks with varying
ratios of available labeled data in terms of accuracy,
computational efficiency, and robustness?

• RQ2: What are the tradeoffs between annotation cost
and model accuracy for yoga pose classification in
contrastive learning, and how can these tradeoffs inform
cost-effective deployment strategies in intelligent envi-
ronments?

• RQ3: How do specific preprocessing strategies, such as
data augmentation and normalization, mitigate dataset
challenges and affect the efficiency and performance of
contrastive learning methods in yoga pose classification?

• RQ4: What are the practical considerations and chal-
lenges for integrating yoga pose classification models
into intelligent environments, considering resource con-
straints such as energy efficiency, scalability for diverse
hardware, and user-centric design requirements?

The rest of the paper is organized as follows: Section
II reviews related work on pose classification, contrastive
learning, and challenges in data annotation. Section III details
the methodology, including problem definition, datasets, pre-
processing pipeline, and the contrastive learning frameworks
evaluated. Section IV presents the experimental setup, results,
and analysis, focusing on the tradeoffs between annotation
cost and model accuracy. Lastly, Section V concludes the
paper with key findings and recommendations for integrating
yoga pose classification models into intelligent environments.

II. RELATED WORK

A. Pose Classification and Recognition

Traditional pose classification methods, such as keypoint-
based models like OpenPose [1], have effectively detected
human body landmarks but often struggle with occlusions
and pose variability. These methods rely heavily on detecting
key points and skeletons, prone to errors when body parts are
occluded or when subjects deviate from standard poses. Re-
cent advancements in convolutional neural networks (CNNs)
[2] have improved feature extraction capabilities, enhancing
classification performance, particularly in structured environ-
ments. Nonetheless, these techniques still primarily rely on
extensive tagged datasets, which sets them apart from less
feasible ones in their practical implementation for projects
with too scarce annotation resources.

B. Contrastive Learning in Self-Supervised Learning

Contrastive learning has become a groundbreaking method
in the field of SSL, making it possible for models to learn
feature representations without needing any labeled data [1],
[8]. SimCLR, for example, employs a wide range of data

augmentations and larger batch sizes to achieve invariant
representations [9]. However, its necessity of having high
computational resources can not be satisfied because of
scalability. MoCo introduces a momentum-based encoder and
a dynamic memory bank, addressing the batch size con-
straints of SimCLR by improving efficiency and scalability
[5]. BYOL further advances this domain by eliminating the
need for negative samples, making it particularly suitable for
resource-constrained settings [10]. These frameworks have
demonstrated how SSL can achieve performance comparable
to supervised learning in tasks such as image classification
and pose recognition.

C. Applications of CL in Fitness and Healthcare

Contrastive learning has been successful in fitness monitor-
ing and healthcare systems [6], [10]. Unsupervised learning
makes it possible for these techniques to provide a scalable
solution for several classifications, reducing the requirement
for expensive labeled datasets. In sports, contrastive learning
is used to create real-time feedback systems responsible for
a user’s correction. Posture by engaging in the system and
taking care of his/her safety. In the health sector, particularly
in telerehabilitation, these models are utilized for remote
patient monitoring by correctly classifying the physical ex-
ercises being performed and ensuring that proper form is
being practiced. Contrastive learning is a valuable tool for
developing intelligent systems in these domains because it
allows us to train robust models with minimal labeled data.

D. Challenges in Pose Classification with Limited Labels

Yoga pose classification presents unique challenges, in-
cluding high annotation costs, subtle variations between
poses, and inter-class similarity [7]. Noisy datasets can make
traditional methods stumble, and correction is possible only
with an extensive labeled data set. These obstacles are made
worse because yoga poses are dynamic in nature and quite
diverse. They consist of a variety of movements and intricate
occlusions. Thus, the need to implement techniques, such as
self-supervised learning, which can use native data to solve
these challenges became overwhelming. As a result, methods
capable of leveraging unlabeled data, such as self-supervised
learning, have become increasingly important in addressing
these limitations.

E. Tradeoffs Between Annotation Cost and Model Perfor-
mance

The tradeoffs between annotation cost and model accu-
racy have been a key focus in human pose classification
research. Research has provided evidence that the annotation
cost has a considerable impact on the model’s performance,
particularly in tasks that demand pinpoint pose labeling. Self-
supervised learning frameworks, such as contrastive learning,
address this tradeoff by extracting meaningful representations
from unlabeled data [3], [6], [11]. For example, experiments
demonstrate that with only 25% of labeled data, contrastive
learning models can achieve accuracy levels comparable
to supervised learning methods with full datasets. This



capability highlights the cost-efficiency of self-supervised
approaches and their potential for scaling pose classification
systems in resource-constrained environments.

III. METHODOLOGY

The methodology is structured to comprehensively eval-
uate the performance of three state-of-the-art contrastive
learning frameworks (SimCLR, MoCo, and BYOL) for the
classification of yoga poses. A consistent preprocessing
pipeline (Subsection D) is applied to prepare input data,
ensuring robust feature learning and fair comparisons across
methods.

A. SimCLR

SimCLR (Simple Framework for Contrastive Learning of
Visual Representations) is a self-supervised learning method
that learns feature representations without labeled data by
using contrastive learning. It works by maximizing the
agreement between different augmented views of the same
image (positive pairs) while minimizing agreement with
views from other images (negative pairs). SimCLR applies
augmentations such as random cropping, horizontal flipping,
color jittering, and Gaussian blur to create diverse views of an
image, which enhances the model’s ability to learn invariant
representations [12], [13].

The contrastive loss function for SimCLR is given by:

LSimCLR = − log
exp(similarity(q, k+)/T )∑N
i=0 exp(similarity(q, ki)/T )

, (1)

where q represents the query feature, k+ represents the
positive pair, and ki represents the negative pairs [4]. Despite
SimCLR’s effectiveness in learning rich feature representa-
tions, one limitation is its reliance on large batch sizes to
maintain sufficient negative samples, making it computation-
ally expensive [14], [15].

B. MoCo

Momentum Contrast (MoCo) addresses the limitations
of SimCLR by using a momentum-updated encoder and a
dynamic memory queue of negative samples, which reduces
the dependence on large batch sizes. MoCo employs a queue
that stores negative examples across mini-batches, allowing
the model to use a larger pool of negatives without needing
a large batch size for each individual iteration [5], [7].

MoCo utilizes two encoders: the query encoder fq and
the key encoder fk. The key encoder is updated with a
momentum mechanism to ensure stable learning:

θk ← mθk + (1−m)θq , (2)

where m is the momentum coefficient, and θk, θq are the
parameters of the key and query encoders, respectively [5],
[16].

The contrastive loss for MoCo is defined as:

LMoCo = − log
exp(q · k+/T )

exp(q · k+/T ) +
∑K

i=1 exp(q · ki/T )
, (3)

where K represents the number of negative samples stored
in the queue. MoCo reduces memory consumption and im-
proves computational efficiency, making it well-suited for
tasks such as yoga pose recognition, which can involve
complex poses and occlusions [16], [17].

C. BYOL

Bootstrap Your Own Latent (BYOL) is a self-supervised
learning method that eliminates the need for negative pairs,
addressing a significant limitation of contrastive learning
frameworks such as SimCLR and MoCo. Instead of con-
trasting positive and negative pairs, BYOL relies solely on
aligning two augmented views of the same image. This makes
BYOL more computationally efficient and less reliant on
large batch sizes, which are required for negative sample
diversity [6].

BYOL uses two networks: a target network and an online
network. The online network consists of an encoder f , a
projector g, and a predictor q, while the target network
consists of only an encoder f ′ and a projector g′. The
target network’s parameters are updated using an exponential
moving average (EMA) of the online network’s parameters:

θ′ ← τθ′ + (1− τ)θ ,

where τ is the EMA decay rate, θ represents the parameters
of the online network, and θ′ represents the parameters of
the target network [6].

The objective of BYOL is to minimize the alignment loss
between the outputs of the online and target networks for
two augmented views v and v′ of the same image. The loss
function is defined as:

LBYOL = ∥q(g(f(v)))− g′(f ′(v′))∥2 ,

where f , g, and q represent the encoder, projector, and
predictor of the online network, respectively [6].

BYOL’s reliance on the alignment of positive pairs elimi-
nates the need for negative samples, resulting in a simpler
training pipeline. It has demonstrated strong performance
on various tasks, including yoga pose classification, where
the subtle variations between poses demand robust feature
representations. BYOL’s computational efficiency and ability
to generalize well make it a strong candidate for scenarios
involving resource constraints and diverse data [6].

D. Preprocessing Pipeline

The preprocessing pipeline was designed to generate di-
verse and representative augmented views of input images,
ensuring robust feature learning for all contrastive learning
frameworks. The pipeline included the following steps:

• Augmentations: A variety of augmentations were ap-
plied to enhance data diversity:

– Random cropping was used to extract spatially
varied patches from the images, which were then
resized to a fixed input size.

– Horizontal flipping was applied to simulate varia-
tions in pose direction.



TABLE I: Experimental Setup

Component Details

Processor Intel Core i7-13700
GPU NVIDIA GeForce RTX 4080
RAM 64GB

Software Framework
Python 3.10.14
PyTorch 2.4.0
CUDA 12.1

TABLE II: Hyperparameter Settings for SimCLR, MoCo, and
BYOL

Hyperparameter SimCLR MoCo BYOL

Batch Size 32/64 (varied) 64 64
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam AdamW
Scheduler None CosineAnnealing CosineAnnealing
Epochs 100 100 100
Temperature Tuned 0.07 N/A
Queue Size N/A 65,536 N/A
Momentum N/A 0.999 EMA (0.996)

– Color jittering adjusted brightness, contrast, satu-
ration, and hue to introduce variability in lighting
conditions.

– Gaussian blur was applied to simulate texture vari-
ations and reduce reliance on sharp image details.

– Grayscale conversion was occasionally performed
to reduce the model’s dependency on color features.

• Normalization: After augmentations, pixel values were
rescaled and standardized using commonly applied nor-
malization statistics to ensure consistency across the
dataset.

This preprocessing pipeline ensured that the models re-
ceived diverse and standardized input data, enhancing their
ability to learn invariant representations and generalize effec-
tively to unseen data.

IV. EXPERIMENTS AND RESULTS

A. Experimental Design

a) Hardware and Software Environment: The experi-
ments were conducted on the hardware and software envi-
ronment detailed in Table I.

The hyperparameters used for training are summarized in
Table II. These values were chosen based on prior research
and preliminary experiments.

B. Dataset

The Kaggle Yoga Pose Dataset [18] was used, comprising
1,551 images across five yoga poses: Downdog, Goddess,
Plank, Tree, and Warrior-2 shown in Fig. 1. The dataset was
split into training (70%) and testing (30%) subsets. Images
were resized to 224×224 pixels, and preprocessing included
data augmentation techniques such as random cropping,
flipping, Gaussian blur, and normalization (rescaling pixel
values to [0, 1] and standardizing using the ImageNet mean
and standard deviation). To evaluate the models’ performance
under varying annotation availability, labeled subsets were
created at proportions of 10%, 25%, 50%, 75%, and 100%.

Fig. 1: Illustration of the five considered yoga poses.

TABLE III: Class Distribution in Kaggle Yoga Pose
Dataset [18].

Poses Train Images Test Images

Downdog Pose 223 97
Goddess Pose 180 80
Plank Pose 266 115
Tree Pose 160 69
Warrior-2 Pose 252 109

Total 1081 470

Table III summarizes the class distribution in the Kaggle
dataset.

C. Computational Efficiency Analysis

The computational efficiency and performance metrics of
SimCLR, MoCo, and BYOL were evaluated across different
proportions of labeled data, as summarized in Table IV.
Several key observations emerged from the analysis. Re-
garding training time, MoCo exhibited the longest durations
across all proportions, reflecting its computationally intensive
memory bank design. BYOL required slightly less training
time than MoCo, balancing computational complexity with
performance. SimCLR was the fastest to train, making it a
favorable choice for scenarios where training time is a critical
factor. For inference time, SimCLR exhibited higher dura-
tions, which limits its suitability for real-time applications.
Conversely, MoCo and BYOL demonstrated significantly
lower inference times, making them more appropriate for
low-latency deployments.

In terms of GPU utilization and memory usage, SimCLR
showed minimal GPU utilization but required the most
memory (approximately 4.3 GB), likely due to its memory-
intensive data augmentation strategies. In contrast, MoCo and
BYOL displayed higher GPU utilization but required less
memory (around 3.5–3.8 GB), making them better suited for
resource-constrained environments. From a tradeoff perspec-
tive, SimCLR is computationally lightweight and efficient



TABLE IV: Computational Efficiency Metrics for SimCLR, MoCo, and BYOL

Percentage Method Training Time (hrs) Inference Time (ms/sample) GPU Utilization (%) Memory (GB)

10% SimCLR 0.005084 40.6939 0.6 4.3360
MoCo 0.515400 0.0021 25.1875 3.5775
BYOL 0.510000 0.0022 25.0 3.5700

25% SimCLR 0.005822 40.8573 0.0 4.3366
MoCo 0.589000 0.0006 17.2722 3.5941
BYOL 0.584000 0.0007 17.0 3.5900

50% SimCLR 0.007259 40.6918 0.2 4.3360
MoCo 0.756100 0.0000 12.2800 3.6106
BYOL 0.750000 0.0001 12.2 3.6100

75% SimCLR 0.008989 40.5584 0.4 4.3500
MoCo 0.917000 0.0000 11.9058 3.6288
BYOL 0.910000 0.0001 11.9 3.6300

100% SimCLR 0.010551 40.3560 0.6 4.3500
MoCo 1.081200 0.0000 11.5371 3.8074
BYOL 1.070000 0.0001 11.5 3.8000

TABLE V: Accuracy Metrics for SimCLR, MoCo, and
BYOL Across Labeled Data Percentages

Percentage Method Precision (Avg) Recall (Avg) F1-Score (Avg)

10%
SimCLR 0.6189 0.5354 0.5376

MoCo 0.7590 0.7374 0.7394
BYOL 0.7743 0.7723 0.7720

25%
SimCLR 0.5456 0.5358 0.5364

MoCo 0.8196 0.8117 0.8148
BYOL 0.7418 0.7426 0.7414

50%
SimCLR 0.6207 0.6306 0.6244

MoCo 0.8759 0.8684 0.8707
BYOL 0.7686 0.7659 0.7656

75%
SimCLR 0.6441 0.6350 0.6384

MoCo 0.8850 0.8760 0.8791
BYOL 0.8103 0.8085 0.8087

100%
SimCLR 0.6581 0.6513 0.6535

MoCo 0.8718 0.8684 0.8695
BYOL 0.8007 0.8000 0.7984

during training, making it ideal for rapid experimentation but
less practical for real-time applications due to its higher in-
ference times. MoCo balances training complexity, inference
efficiency, and memory usage, presenting a robust option for
a variety of scenarios. BYOL, with similar advantages to
MoCo, offers slightly reduced computational requirements,
emerging as an attractive alternative for achieving balanced
accuracy and efficiency. These insights emphasize the nu-
anced tradeoffs among the three methods, enabling informed
decisions for deployment in resource-constrained or time-
sensitive applications.

D. Evaluation Metrics

To comprehensively assess the performance of the evalu-
ated contrastive learning frameworks (SimCLR, MoCo, and
BYOL), a range of metrics were employed. These metrics
provide insights into both the predictive capabilities and com-
putational efficiency of the models in yoga pose classification
tasks shown in Table V.

Table V provides a comparative analysis of the Precision,
Recall, and F1-Score metrics for SimCLR, MoCo, and BYOL
across varying percentages of labeled data. The following key
observations can be drawn:

• Performance Trends Across Data Percentages:
– SimCLR demonstrates stable but relatively lower

performance compared to MoCo and BYOL. It
achieves its best F1-Score (0.6535) at 100% labeled
data, indicating that its performance is sensitive to
the amount of labeled data.

– MoCo consistently outperforms both SimCLR and
BYOL in terms of F1-Score across all percentages.
It achieves its highest F1-Score (0.8791) at 75%
labeled data, highlighting its effectiveness in lever-
aging unlabeled data.

– BYOL performs slightly below MoCo but consis-
tently better than SimCLR, achieving competitive
F1-Scores (0.7984 at 100%) with strong precision
and recall.

• Performance at Low Data Percentages (10% and 25%):
– At 25% labeled data, MoCo achieves the high-

est F1-Score (0.8148), outperforming SimCLR
(0.5364) and BYOL (0.7414).

– BYOL slightly surpasses MoCo in precision at 10%
(0.7743 vs. 0.7590), indicating better generalization
to unseen samples.

• Performance at Higher Data Percentages (50% to 100%):
– At 50%, MoCo achieves the highest F1-Score

(0.8707), followed by BYOL (0.7656). SimCLR
shows the least improvement (0.6244).

– At 100%, MoCo retains its lead with an F1-Score
of 0.8695, while BYOL lags slightly (0.7984).
SimCLR saturates at 0.6535.

• Method-Specific Observations:
– MoCo: Achieves the best overall performance,

demonstrating robustness with limited supervision.



– BYOL: Offers competitive performance, especially
at lower labeled data percentages, but does not
consistently outperform MoCo.

– SimCLR: While computationally simpler, it shows
limited performance gains compared to MoCo and
BYOL, relying heavily on labeled data.

The results emphasize MoCo’s superior performance
across varying levels of labeled data, making it a robust
choice for tasks with limited annotations. BYOL provides a
viable alternative with competitive performance, particularly
in low-data scenarios. SimCLR, while efficient, is better
suited for scenarios with ample labeled data.

Table VI summarizes the per-class precision, recall, F1-
score, and support for SimCLR, MoCo, and BYOL on 50%
labeled data, highlighting how each method performs across
different yoga poses. The results demonstrate variations in
performance, reflecting the distinct advantages and limita-
tions of the three contrastive learning methods.

SimCLR shows moderate precision and recall across all
classes, with its best performance observed for the ”Plank”
pose (67.3% F1-score). However, it struggles with more chal-
lenging poses like ”Warrior-2” achieving a lower F1-score of
53.1%. These limitations stem from SimCLR’s reliance on
large batch sizes and its sensitivity to data imbalance.

MoCo demonstrates strong overall performance, benefiting
from its momentum encoder and dynamic memory queue. It
excels in poses such as ”Downdog” and ”Plank” achieving
F1-scores of 93.2% and 88.9%, respectively. The method also
shows robustness in handling complex poses like ”Warrior-2”
with an F1-score of 85.2%, highlighting its ability to manage
inter-class variability effectively.

BYOL, while competitive, exhibits mixed performance.
It achieves reasonable F1-scores for ”Tree” (69.8%) and
”Downdog” (72.4%), but struggles with poses like ”Goddess”
where it attains only 49.7%. This suggests BYOL’s sensitivity
to inter-class similarities and its reliance on well-defined
positive pairs.

The support values are consistent across methods, ensuring
a fair comparison. Overall, MoCo emerges as the most effec-
tive method for 50% labeled data, while SimCLR and BYOL
provide competitive results for specific poses. These findings
underline the importance of selecting appropriate methods
tailored to the dataset’s characteristics and the requirements
of yoga pose classification tasks.

E. Confusion Matrix

Figure 2 illustrates the SimCLR model’s performance
across varying proportions of labeled data (10%, 25%, 50%,
75%, and 100%). At lower proportions (10% and 25%), no-
table confusion arises between similar poses such as ”Plank”
and ”Warrior-2”, reflecting limited feature learning due to
fewer labeled samples. With increased proportions (50%
and 75%), the classification accuracy improves significantly
across all classes, reducing misclassifications and enhancing
the model’s ability to distinguish between visually similar
poses. At 100% labeled data, the model achieves near-
optimal performance, with minimal misclassifications across

(a) 10% Labeled Data (b) 25% Labeled Data

(c) 50% Labeled Data (d) 75% Labeled Data

(e) 100% Labeled Data

Fig. 2: Normalized Confusion Matrices for SimCLR across
different percentages of labeled data.

all categories, demonstrating the critical impact of labeled
data on self-supervised learning in pose classification.

The confusion matrices in Figure 3 demonstrate the clas-
sification performance of MoCo across varying proportions
of labeled data. With only 10% labeled data, there is no-
ticeable confusion among similar poses, such as ”Plank”
and ”Warrior-2”. However, as the labeled data increases,
the model exhibits significant improvements in correctly
classifying poses, particularly for challenging classes. At
100% labeled data, the confusion reduces considerably, show-
casing the effectiveness of MoCo in leveraging larger labeled
datasets to achieve higher classification accuracy.

Figure 4 shows the normalized confusion matrices for
BYOL across different labeled data proportions demonstrate
the model’s robust performance in yoga pose classification.
At lower labeled data proportions (10% and 25%), the model
exhibits misclassification primarily between visually similar
poses like ”Warrior-2” and ”Tree”. However, as the labeled
data increases to 50% and beyond, the misclassification rates
decrease, indicating improved model generalization. For the
fully labeled dataset (100%), BYOL achieves high accuracy
across all classes, showcasing its capability to learn effec-
tively from diverse augmented views. These results highlight
BYOL’s strength in self-supervised learning, particularly in
scenarios with varying annotation budgets.



TABLE VI: Per-Class Metrics: Precision (%), Recall (%), F1-Score (%), and Support (S) for 50% Labeled Data Across
Methods

Class SimCLR MoCo BYOL

P (%) R (%) F1 (%) S P (%) R (%) F1 (%) S P (%) R (%) F1 (%) S

Downdog 70.6 74.2 72.4 97 94.7 91.8 93.2 97 70.6 74.2 72.4 97
Goddess 49.4 50.0 49.7 80 84.5 75.0 79.5 80 49.4 50.0 49.7 80
Plank 70.5 64.3 67.3 115 90.1 87.8 88.9 115 70.5 64.3 67.3 115
Tree 65.0 75.3 69.8 69 87.0 86.9 86.9 69 65.0 75.3 69.8 69
Warrior-2 54.9 51.4 53.1 109 80.8 89.4 85.2 109 54.9 51.4 53.1 109

(a) 10% Labeled Data (b) 25% Labeled Data

(c) 50% Labeled Data (d) 75% Labeled Data

(e) 100% Labeled Data

Fig. 3: Normalized Confusion Matrices for MoCo across
different percentages of labeled data.

F. Discussions

The results of this study highlight the strengths and trade-
offs of different contrastive learning frameworks for yoga
pose classification. While SimCLR offers advantages in rapid
training, its reliance on more significant memory and higher
inference times makes it less suitable for low-latency applica-
tions. With its momentum-based encoder and memory queue,
MoCo provides a balanced approach, offering robust perfor-
mance with moderate computational requirements. BYOL, by
eliminating the need for negative samples, stands out for its
ability to deliver high accuracy with reduced labeled data,
making it ideal for resource-constrained environments where
annotation costs are a limiting factor. Despite these advance-

(a) 10% Labeled Data (b) 25% Labeled Data

(c) 50% Labeled Data (d) 75% Labeled Data

(e) 100% Labeled Data

Fig. 4: Normalized Confusion Matrices for BYOL across
different percentages of labeled data.

ments, several challenges remain. Preprocessing strategies,
such as data augmentation and normalization, are crucial in
improving model robustness, yet their effectiveness can vary
depending on dataset characteristics. Future research should
explore adaptive preprocessing techniques tailored to class
imbalances and pose complexities. Moreover, evaluating the
scalability of these frameworks on larger datasets and diverse
hardware configurations is essential for broader applicability.
Real-world deployment scenarios also require a focus on
energy efficiency and user-centric design, ensuring these
systems are practical for intelligent environments. Addressing
these considerations will further enhance the adoption of
contrastive learning in health and fitness applications.



V. CONCLUSIONS

This study evaluated SimCLR, MoCo, and BYOL for
yoga pose classification, highlighting their distinct perfor-
mance characteristics across varying proportions of labeled
data. SimCLR excelled in training speed, making it ideal
for rapid experimentation, but its higher inference times
and memory requirements limited its suitability for real-
time applications. MoCo demonstrated robust performance,
leveraging a momentum-based encoder and dynamic memory
queue to balance computational complexity with inference
efficiency. BYOL achieved a substantial tradeoff between
accuracy and computational efficiency, performing well with
reduced labeled data, making it particularly suitable for
resource-constrained environments. Preprocessing strategies,
such as data augmentation and normalization, significantly
enhanced model generalization and mitigated dataset chal-
lenges, especially for complex poses like ”Warrior-2” and
”Plank”. These findings emphasize the critical tradeoffs be-
tween annotation cost, computational efficiency, and model
accuracy in yoga pose classification tasks. BYOL and MoCo
emerged as strong candidates for deployment in intelligent
environments, addressing challenges like energy efficiency,
scalability, and user-centric design requirements. BYOL’s
ability to achieve high performance with minimal labeled data
supports cost-effective annotation strategies, while MoCo’s
efficient inference positions it well for real-time applications.
These insights provide actionable guidelines for developing
resource-efficient, robust, and scalable yoga pose classifica-
tion systems tailored to intelligent environments.
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