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ABSTRACT Online videos are a potent tool for educators to disseminate knowledgewidely to diverse student
audiences. However, collecting student feedback remains a significant challenge for lecturers, particularly
in the absence of feedback. Understanding students’ subjective comprehension levels during online video
lectures with sensor technology is yet to be thoroughly researched. This study uses eye-tracking technology
to predict self-reported comprehension levels during video lectures. We recruited 20 participants from
Germany and Japan who were invited to watch 50-minute lecture videos in three domains. The participants
self-annotate the time segment in each lecture video where they dropout using open-source LabelStudio
and answer the survey. We applied Long-Short-Term Memory (LSTM) to the preprocessed dataset and
achieved an F1 Score of 0.886 for predicting binary self-annotated comprehension levels. We also introduce
EyeUnderstand, the web-based application for visualizing the results of the comprehension estimation.
We recruited 28 participants for the user study. As a result, 89.3% of the students and 92.9% of the lecturers
confirmed that our application is practical.

INDEX TERMS Eye-tracking, hybrid education, online lecture, subjective comprehension estimation,
dropout, deep-learning, web application, education.

I. INTRODUCTION
Eyes speak more eloquently than lips. This is a well-known
saying in Japan that the eyes express honest thoughts better
than what a person says. As explained in this proverb, much
research has been done to understand people through their
eyes [1], [2], [3], [4], [5]. Hence, understanding the eyes is
important in human-computer interaction (HCI).

Remote sensing is becoming increasingly crucial after the
devastating COVID-19 pandemic. Education has undergone
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a profound transformation, rapidly shifting towards hybrid
learning models. Online video lectures have become a
powerful tool for disseminating knowledge to a vast audience
asynchronously. However, compared to in-person lectures,
the lack of monitoring students’ capabilities is a significant
challenge for teachers, leading to an urgent need for a deeper
understanding of non-verbal cues from remote audiences.
Compelling evidence from previous research underscores the
limited attention span of audiences, with studies suggesting
a mere 10–20 minutes of sustained focus before attention
wanes [6]. Moreover, dropout rates escalate proportionately
to the duration of video content [7]. Understanding content
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FIGURE 1. Overview of our application EyeUnderstand use case scenario. Our application allows for the importation of eye-tracking log
data and the estimation of self-reported comprehension levels with the machine learning model. The result will be visualized as a bar
graph, and video content creators (such as lecturers) can check where the content viewers (such as students) drop while watching the
online video.

viewers (students) comprehension while watching online
video lectures will help content creators (lecturers) and
content viewers gain feedback and higher-quality videos.

Comprehension can be viewed from both objective and
subjective perspectives. The objective perspective involves
estimating understanding through test scores or other quan-
tifiable assessments [8], [9], [10]. In contrast, the subjective
perspective refers to how learners perceive their level of
understanding, which is often a key factor when students fall
behind or drop out.While many experiments and studies have
focused on objectively measuring comprehension [8], [9],
[10], this research aims to investigate the subjective aspect
of comprehension in real-time during class.

In this study, we aim to understand human subjective
comprehension levels while watching the online video lecture
from their eyes. To do so, we recruited an eye-tracker to
collect participants’ eyemovements while watching the video
and gain post-self-annotation of subjective comprehension
level from themselves.We instructed participants to complete
the survey to ensure that they remained focused on the
lecture. Figure 1 shows our application overview of the
whole application concept. We introduce the approach of
estimating subjective comprehension levels from the eyes and
aim to combine multiple students’ overviews to understand
the quality of online lecture videos better. We implemented
a pilot application, EyeUnderstand, which can import
eye-tracking raw data and visualize the estimation outcome
of subjective comprehension level as graphs. The application,
EyeUnderstand, allows video content creators, especially
lecturers, to gain valuable feedback on when and which time
segments of the video students find dropout against the video.
This insight can be instrumental in improving the quality of
online lecture videos and enhancing the learning experiences.

Our findings and implementation make significant strides
toward education and providing a lifecycle for video content
creators and viewers, especially feedback for remote learning
environments. Our contributions (C1-C3) to this paper are as
follows:

C1 Subjective Comprehension Level Estimation: We
investigate prediction of subjective comprehension
state from the participant gaze data.

C2 Cultural Comparison: We compared the gaze behav-
iors of participants in Germany and Japan.

C3 Implementation of Web Application: We present our
application EyeUnderstand and conduct a user-study
of the usability.

This paper begins by introducing relevant related works.
Following that, we explain the methodologies of our study.
Then, we explain our data collection approach, results,
and discussion. Subsequently, we will introduce our web
application EyeUnderstand in detail. Finally, we address the
limitations of our dataset and outline future directions for this
research.

II. BACKGROUND AND RELATED WORK
This section presents inspired related work. The section
begins with various sensors used for activity recognition.
Then, we introduce works on cognitive understanding using
various sensors. Lastly, eye-tracking works, focusing on
understanding lecture attendees.

A. ACTIVITY SENSING WITH SENSORS
Zhai et al. [11] presents a pioneering framework centered
around the design of a real-time video stream-oriented
behavior recognition platform [11]. Their groundbreaking
work harnesses the power of edge computing within the
camera, facilitating robust activity recognition under diverse
conditions. Dimiccoli et al. [12] has used egocentric camera
to collect 21 classes of activities [12]. This work achieved a
recognition accuracy of 79%. EduSense project study focuses
on using a camera to collect students’ activities in offline
classes [13]. The project uses a Microsoft Kinect one-depth
camera and Intel NUC to discover student activities such
as raising a hand, sitting, standing, smiling, speaking,
attention, class gaze, or head orientation. There are more

VOLUME 13, 2025 102221



K. Watanabe et al.: EyeUnderstand: Dashboard for Gaze and Deep-Learning Driven Comprehension Estimation

TABLE 1. Comparison of previous work against our work. OC stands for objective comprehension, SC stands for subjective comprehension, and ET stands
for eye-tracking. The implementation of the App (visualization application), and the study detail is also mentioned.

works on sensing activities like nodding [14], [15], [16] or
postures [17], [18]. Zhu et al. [19] present work on comparing
mouse (cursor movement) activity and gaze behavior in
e-learning condition [19]. The work found that both mouse
and gaze movement correlates with activity. The work is
influential in replacing estimating gaze movement but does
not include pupil diameter. These projects aim to measure
participants’ offline and online activity using sensors.

B. COGNITIVE STATE SENSING WITH SENSORS
Kawamura et al. [25] put forth a compelling approach to esti-
mate audience wakefulness during video lectures, harnessing
the synergistic fusion of multi-modal data. By leveraging
facial expressions captured via webcams and seat pressure
measurements, they achieved a commendable F1-macro
score of 0.70, signifying a substantial advance in wakefulness
estimation during remote lectures. Abdelrahman et al. [26]
used thermal sensor to measure the cognitive load. The
work achieved in measuring nose temperature to reduce
when having a higher cognitive load. Meanwhile, forehead
temperature is the inverse relationship of the nose. Other
then above, engagement detection [27], [28], [29], [30],
or attention levels estimation [23], [31], [32] are done by
several researchers.

Kar et al. [33] have made significant strides in estimating
audience attention during lectures, combining presentation
slides, eye gaze, and gaze gestures to capture a learner’s
attention level, achieving an impressive average absolute
error rate of 8.68%. Abdelrahman et al. [34] mentioned that
attention has various classes. To understand participants’
attention states, they collected 22 participants and achieved
four different attention state classifications by AUC of 75.7%
for user conditions.

Burch [35] focuses on providing real-time slide feedback,
leveraging the students’ gaze as a vital indicator of engage-
ment and confidence. Meanwhile, Bixler and D’Mello [36]
have pioneered the development of a supervised classification
cross-domain model for detecting mind-wandering during
lectures, leveraging an extensive dataset of 132 users’ mind-
wandering reports. With the domain dependency, AUROCs
scored from 0.57 to 0.72 for estimating mind-wondering.
Similarly, Zermiani et al. [37] have embarked on a pilot

study that analyzes gaze patterns associated with tendencies
towards mind-wandering during lecture viewing. While their
findings highlighted notable trends in off-screen fixation
behavior, challenges on the variation in mind-wandering
scenarios and participant-specific responses call for further
nuanced investigations and novel methodological approaches
to unlock the full potential of lecture-based learning
environments.

C. COMPREHENSION ESTIMATION USING EYE-TRACKING
Table 1 shows the overall comparison of the previous work
and our study. Augereau et al. [9] work on estimating
TOEIC 1 score using a mobile eye-tracker. After calculating
fixation and saccade, the study achieved an absolute mean
error of 36.3 points, with a standard deviation of 46.5 points.

Sauter et al. [20] have aimed to predict test quiz perfor-
mance using the synchronicity of eye movements. While
their study did not establish a direct correlation between
eye movement synchronicity and test results, it underscored
the pivotal role played by the teacher’s presentation style in
shaping student engagement.

de-la Peña [21] aims to understand the role of eye-tracking
in implicit reading comprehension and intervening skills such
as vocabulary, rapid automatized naming, and processing
speed. Their findings implicate that better performance in
reading comprehension (literal, inferential, and total) is
related to and explained by shorter eye movement, more
extensive vocabulary, and processing speed.

Huang et al. [22] combines online (eye-tracking) and
offline (reading comprehension test) measures to investigate
the relationships among word processing, working memory
(WM), and second language (L2) reading comprehension
performance, and their results expand the understanding of
the role of WM in unfamiliar word processing during L2
reading comprehension.

Srivastava et al. [3] pioneered contactless sensors to gauge
learning difficulties in digital learning environments. They
collected 100 participants’ real-time difficulty self-reports
with eye-tracking and thermal cameras. Srivastava et al. [23]
then convert gaze information into the area of interest (AOI)

1http://www.toeic.or.jp/library/toeic data/toeic en/pdf/data/ TOEIC Pro-
gram DAA.pdf
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and check the synchronizationwith the screen. Thework aims
to determinewhether the student is on trackwith the lecturer’s
explanation.

Sanches et al. [8] proposed a method to estimate the
objective understanding of a learner by analyzing eye
movements while reading. Their findings reported an error of
5.27% in the number of correct answers estimation by using
eye gaze features, while a comparison using the reader’s self-
assessment understanding leads to a 9.04% error.

Santhosh et al. [24] utilized real-time engagement-
based ChatGPT-generated summaries to enhance reader
comprehension and learning outcomes. The results revealed
that AI-driven interventions exhibited significantly better
learning outcomes, higher engagement, and better objective
comprehension results.

In conclusion, various research studies aim to use
eye-tracking to estimate objective and subjective comprehen-
sion. However, the visualization of subjective comprehension
through dashboard implementation has yet to be discovered.
Hence, this study’s most significant contribution aligns here.

III. METHODOLOGY
This section explains experimental settings, materials, data
acquisition tools, data processing, and feature engineering
processes.

A. DATA ACQUISITION
In this study, we used Tobii eye-tracker,2 Label Studio [38]
for self subjective comprehension annotation, and Google
Form3 used for the survey for collecting subjective feedback.

1) EYE-TRACKING DEVICE
The Tobii eye-tracker, which has a sampling rate 90Hz and
records eye movements, is mounted in the Microsoft Surface
Studio 1. It is a remote device with an academic license.
All participants used Microsoft Surface Studio 1 desktop
computers. The screen size is 637.35× 438.90 mm, ensuring
each lecture video can be displayed on a screen. This device is
widely utilized in human-computer interaction research due
to its high precision in capturing gaze behavior and pupil
diameter changes.

2) LABEL STUDIO
Microsoft Surface Studio, with a screen resolution of 4500 ×

3000 pixels. The large screen size ensured clear visibility
of the lecture videos. The eye-tracker collects timestamps,
pupil diameters, and x and y locations of the gaze. We also
collect self-annotation of the labeling of participant dropout
time segment using LabelStudio [38]. The application is an
open-source graphical user interface designed for ease of use.
It empowers anyone tomake subjective comprehension labels
easily.

2https://www.tobii.com/products/eye-trackers/screen-based
3https://workspace.google.com/products/forms/

TABLE 2. The list of online lecture videos. LID corresponds to Lecture ID,
and CS corresponds to Computer Science.

3) MCQ TOOL
Google Forms presented the participants with the multiple-
choice questions (MCQs). This tool streamlined the process
of assessing participants’ comprehension and provided struc-
tured data for analysis.

B. MATERIALS: ONLINE VIDEO LECTURES
Table 2 shows the details of lectures viewed by English and
Japanese speakers. As shown, we prepared six lecture videos
(L1-L6), three types for participants in Germany and another
three for Japan.We prepared lectures in English and Japanese
for participants in Germany and Japan.

We select three domain-specific lectures to collect a
variety of behaviors while watching each university-level
lecture. Also, we collect participants from two different
language domains to verify their robustness or versatility.
A post-survey asked two questions: ‘‘What did you find
easy (difficult) to understand about the lectures?’’. This
perspective supports understanding why the participant felt
dropout about the video lecture.

C. DATA PREPROCESSING
This section explains the major steps of the preprocessing
pipeline. In the initial stage of our study, the dataset
comprised 13,445,116 entries across 40 columns. Through a
meticulous preprocessing process, we meticulously refined
the dataset to 9,845,886 entries distributed among 17 key
columns, ensuring the utmost reliability of our data.

To ensure consistency and comparability of data points
across different scales, we standardized the numerical fea-
tures. This process involved normalizing these features based
on the mean and standard deviation, effectively rescaling
them with a mean of zero and a standard deviation of
one. Such standardization is important and vital for many
machine learning algorithms, which assume data is normally
distributed and scales uniformly. It ensures the uniformity and
reliability of our data.

D. FEATURE ENGINEERING
Table 3 shows the entire feature engineering of the raw dataset
for estimating participant subjective comprehension. This
reduction was primarily due to eliminating rows and columns
that contained missing values or were deemed irrelevant for
our analysis, enhancing the quality and reliability of our
data. The selection of features was strategically focused on
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TABLE 3. Dataset after preprocessing and feature engineering for subjective comprehension estimation.

TABLE 4. An example of the segmentation annotations created by the authors. One round is split into three segments.

those directly influencing the model’s predictive capabilities,
instilling comprehension in the robustness of our model.
System-dependent features are specific to the Tobii eye-
tracker, and other irrelevant attributes, such as duplicated
timestamps and raw system-related attributes, were removed.

1) FIXATION
Fixations occur when the gaze remains relatively stable
over a specific area of interest for a significant duration,
suggesting that the viewer focuses intently on that screen
segment. This stability often correlates with deeper cognitive
processing and engagement, making it valuable for assessing
confidence and attention levels. Fixations were quantified by
setting a minimum duration threshold of 150 milliseconds
and a maximum dispersion threshold within a 100-pixel
radius [39]. This approach ensures that only meaningful gaze
data, indicative of cognitive engagement, are considered,
excluding random or fleeting eye movements.

While using fixation as the selected features, the rest
of the features presented in Table 3 used the mean value
of each feature. Annotations such as uid, cid, and subjec-
tive_comprehension were kept the same. For #timestamp,

we keep the fixation’s start and end value of the fixation.
Lastly, second, which is the time-lapse from the start
#timestamp, is also keeping the first and the last second when
fixation ends.

2) RIGHT AND LEFT PUPIL DIAMETER DIFFERENCE
Kucewicz et al. [40] has mentioned that pupil diameter
increases when a human tries to memorize knowledge in a
brain [40]. Nobukawa et al. [41] mention that calculating
right and left pupil diameter measures the cognitive state
accurately [41]. Having an accurate pupil diameter as a
feature requires differences between right and left pupil
diameters.

Right and left pupil diameter difference indicates cognitive
load and emotional response, as variations in pupil size
can reflect changes in mental effort and emotional state.
A key feature of pupillometry is the difference between
the pupils, which offers a nuanced view of physiological
responses. Intricately linked to cognitive processes during
learning activities, these responses can be accurately mea-
sured using pupillometry, highlighting their potential in this
domain.
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FIGURE 2. Experiment condition. Tobii eye-tracker collects gaze data, and the Windows Surface Studio webcam collects facial recordings.
Participants answer the survey using Google Forms and use LabelStudio to annotate their subjective comprehension state.

FIGURE 3. Experiment workflow. Participants watched three lectures and then conducted subjective comprehension
annotations and answered a survey.

E. MODEL ARCHITECTURE
Models were trained using features such as pupil diameter,
gaze coordinates, and fixation durations. The following
architectures were employed:

1) GAUSSIAN NAIVE BAYES (GNB), DECISION TREE (DT),
AND RANDOM FOREST (RF)
For classification, we used GNB, DT, and RF models. The
RF model was configured with 100 trees, Gini impurity as
the criterion, and a maximum of seven features per split.

2) LONG SHORT-TERM MEMORY (LSTM)
The LSTM model consisted of four layers (128, 64, 32,
and 16 units) with a 30% dropout rate after each layer to
prevent overfitting. The final dense layer used a sigmoid
activation function to predict comprehension levels. Training
employed the Adam optimizer with an adaptive learning rate
scheduler, and early stopping was applied to halt training
when validation performance plateaued.

3) TRANSFORMER
We employed a Transformer encoder for temporal analysis.
Input data consisted of short time-series segments, with
positional encoding applied to capture temporal order. Each
segment was processed through Transformer encoder blocks
featuring multi-head self-attention to assess the importance
of different time steps. A global average pooling layer
condensed temporal data into a feature vector, which was
passed through dense layers to predict comprehension using
a sigmoid activation function.

IV. DATA COLLECTION
The data collection process is a crucial component of
this research, as it forms the foundation for developing
and evaluating the EyeUnderstand application. The study
focuses on capturing participants’ eye-tracking data while
they engage with educational video content and subsequently
predicting their subjective comprehension levels through
deep learning models.

A. PARTICIPANTS
In this study, we recruited 20 participants in Germany
and Japan. Table 4 shows the demographic information of
participants. We recruit participants in Germany who use
English as their primary language at university or in their
company. For participants in Japan, we recruit those who
study or work mainly in Japanese. Participants in Japan
and Germany completed consent forms before the study,
which allowed them to opt out at any time during the
study. Consideration of General Data Protection Regulation
(GDPR) in the consent form for participants in Germany.
Participants in both countries can opt out of the experiment
at any time.

B. EXPERIMENTAL SETTINGS
Figure 2 shows the detail of the experimental settings.
Participants get an explanation of the experiment’s purpose
and the use of the collected data. Once they confirm,
participants sign the consent form and write demographic
information such as gender, age, and significance of the
study. Then, participants do a calibration on the eye-tracker.
After calibration, the participant starts watching a lecture
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video. Once the participant finishes watching, follow the
post-process, which is writing a survey and making a time
segment annotation of when the user feels dropout in the
video lecture. Participants repeat this procedure with two
more video lectures.

We asked participants to watch each video on different
days to avoid fatigue during continuous trials. The lectures
are in music, physics, and computer science. In this study,
we conducted experiments in the same room in a controlled
manner in each country.

C. EXPERIMENT WORKFLOW
Figure 3 illustrates the experiment workflow. The experiment
workflow is the following: (1) Participants were briefed on
the study’s purpose and the intended use of the data. (2) After
confirming their understanding, they signed the consent form
and provided demographic information (e.g., gender, age,
and field of study). (3) A calibration was performed using
the eye-tracker. (4) Participants watched a lecture video,
completed a post-survey, and annotated time segments where
they felt dropout. (5) This process was repeated for two
additional videos on separate days to avoid fatigue. The
lecture videos covered three domains: music, physics, and
computer science. Experiments were conducted in controlled
environments in Germany and Japan to ensure consistency.

The experiments were conducted in a controlled laboratory
environment to ensure the consistency and accuracy of
the eye-tracking data collected. The eye-tracking data was
collected while participants watched educational videos,
allowing us to map fluctuations in gaze and pupil response
to varying levels of self-reported subjective comprehension.
The room was uniformly lit with neutral luminance to reduce
the impact of external lighting variations on pupil dilation,
a factor known to influence eye-tracking measurements [42].
The importance of controlling environmental factors has been
emphasized in eye-tracking literature, as lighting and screen
brightness variations can significantly affect pupil size and
gaze stability [43].

V. RESULT AND DISCUSSION
This section will describe the dataset balance and comprehen-
sion estimation results in detail.

A. DATASET BALANCE
In this section, we summarize the collected dataset. This
section is designed to provide valuable support for future
researchers contemplating the utilization of our publicly
available datasets. Figure 4 shows an output of gaze data
(right and left pupil diameter difference) and self-reported
subjective_comprehension state compared with time. The
red-colored rectangle indicates a time duration when the
participant self-reported as dropout in the video lecture.
The time duration of the dropout state differs between the
example of Participant 5 and Participant 8 as an example
shows.

FIGURE 4. Sample of different participants’ gaze data (right and left pupil
diameter difference) with self-reported comprehension annotation.The
green rectangular parts represent the confident segment, and the red
ones represent the dropout segment.As the sample shows, there are
significant differences in the count of self-report comprehension
annotations.

Furthermore, we identified distinct characteristics associ-
ated with the annotation labels. Specifically, we investigated
the minimum, maximum, and total duration of dropout
time within the first 50 minutes of the video. Remarkably,
participant P5 exhibited the minimum total dropout time
during lecture 2, while participants P12, P14, and P17 in
lecture 6 all recorded 0.0 seconds within a total time-
frame of 3000 seconds (50 minutes). In contrast, the
maximum total dropout time among all participants was
recorded by participant P8 in lecture 2, amounting to
2358.5 seconds within the 3000-second (50-minute) time
frame. A post-survey analysis indicated that the complexity of
the terminology was cited as a prominent difficulty during the
lecture. In contrast, providing comprehensible examples and
diagrams was attributed to heightened participant subjective
comprehension.

B. SUBJECTIVE COMPREHENSION STATE ESTIMATION
In this section, we present the results of self-reported
subjective comprehension estimation using gaze data.
Comprehension estimation is binary, classified as True
or False. We applied several machine learning models
to the dataset, employing leave-one-participant-out cross-
validation (LOPOCV). The results are summarized in
Table 5. Additionally, we compared the effectiveness of
various input features across machine-learning and deep-
learning models.

Initially, pupil diameter and gaze coordinates were used
as baseline features since the Tobii eye-tracker directly
collects these data points (see Table 3). Using these baseline
features, LOPOCV yielded an F1 score of 0.515 with the
Random Forest classifier, the best machine learning model.
The deep-learning model (LSTM) achieved a significantly
higher F1 score of 0.865.

Next, we incorporated the difference between right and
left pupil diameters, which is known to measure cognitive
state [41] accurately. Adding this feature improved the
LSTMmodel’s performance, achieving an average LOPOCV
F1 score of 0.886. This result indicates that the pupil
diameter difference is valuable for estimating subjective
comprehension levels.
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TABLE 5. Performance Metrics of comprehension estimation for Gaussian Naive Bayes, Decision Tree, Random Forest, LSTM, and Transformer against
leave-one-participant-out cross-validation (LOPOCV).

FIGURE 5. Best perform LOPOCV (leave-one-participant-out cross-validation) result of estimating comprehension using LSTM.

We then included fixation duration as an additional feature,
as fixation is closely associated with participants’ attention
during video viewing. However, adding fixation duration
reduced the LOPOCVF1 score for the LSTMmodel to 0.818.
This suggests that fixation duration may introduce ambiguity
in subjective comprehension state classification. Prolonged
fixation can indicate either high interest or difficulty in
following content.

Figure 5 displays individual participant subjective com-
prehension estimation results for the feature combination
yielding the highest average F1 score. Some participants
(e.g., P4, P14, and P16) exhibited lower scores. Reviewing
the webcam recordings from the Windows Surface Studio,
we observed these participants frequently moving closer or
further from the screen, resulting in misalignment with the

calibrated eye-tracker. This movement impacted the data’s
consistency.

In conclusion, the difference between right and left
pupil diameters proved helpful for estimating subjective
comprehension. However, frequent upper-body movement
among some participants can reduce measurement accuracy
with the mounted Tobii eye-tracker.

C. CULTURAL COMPARISON
To understand the influence of cultural differences on gaze
behavior and feature importance during online video lectures,
we analyzed data separately for German and Japanese
participants. Feature importance was determined using a
machine learning model trained on various eye-tracking
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FIGURE 6. Top five important feature for predicting subjective comprehension level among German and Japanese participants.

TABLE 6. Comparison between participants in Germany and Japan for leave-one-participant-out cross-validation using LSTM.

and pupillometry features to predict participants’ subjective
comprehension.

The feature importance graphs (FIGURE 6) illustrate the
relative significance of each feature in themodel’s predictions
for both groups. Each bar represents the contribution of a
specific feature to the model’s predictive accuracy, with the
y-axis showing relative importance and the x-axis listing the
features.
Pupil Diameter Right-Left Difference holds notably higher

importance for Japanese participants, where it is the second
most critical feature, contributing over 0.2 to the model’s
predictions. This is less prominent in the German group.
This difference may indicate a higher sensitivity to cognitive
load or emotional response during learning among Japanese
participants, potentially reflecting a holistic and integrative
cognitive style prevalent in Japanese educational contexts.
In such contexts, learners may actively balance emotional and
cognitive responses, influencing their gaze behaviors during
online lectures.
Gaze Coordinates show relatively similar importance

across both groups, though they are slightly more influential
in the Japanese group. This suggests that while the specific
areas of the screen where participants focus their gaze affect
comprehension, this influence is somewhat consistent across
cultures, with only slight variations in emphasis.

Finally, Pupil Diameter and Right Pupil/Left Pupil fea-
tures are of minimal importance in both groups, indicating
that while pupillary responses are measured, they are less
predictive of the outcomes in this educational context for both
German and Japanese participants.

These cultural differences in feature importance may
stem from underlying variations in educational practices
and cognitive processing styles. For example, the emphasis

on fixation duration in German participants could reflect
a learning culture prioritizing sustained attention and deep
engagement with content. Meanwhile, the significant role
of pupil diameter differences in Japanese participants might
suggest a learning style more attuned to balancing cognitive
load and emotional processing, consistent with a holistic
educational approach.

By understanding these differences, educators and devel-
opers of online educational tools can better tailor content and
interaction methods to suit the learning styles of different
cultural groups, potentially enhancing the effectiveness of
online education across diverse audiences.

D. ENHANCEMENT WITH SLIDING WINDOWS TRAINING
Building on the results of our initial experiments, where
various machine learning models were tested on gaze data for
subjective comprehension estimation, we sought to optimize
the training process further and improve model performance.

To achieve this, we implemented a sliding windows
approach, a technique commonly used in time-series data
analysis, to enhance the temporal resolution of our model
inputs. The sliding windows approach allows the model to
capture more nuanced temporal dependencies by training on
overlapping segments of gaze data rather than treating the
entire lecture as a single, static input. This method aligns
well with the dynamic nature of gaze behavior, where student
attention and comprehension can fluctuate significantly over
short periods.

Table 6 shows a comparative analysis of the results
obtained using the sliding windows approach on the datasets
from Germany and Japan. These results demonstrate that the
sliding windows method effectively captures the temporal
dynamics of gaze behavior, leading to a more accurate
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FIGURE 7. User Interface of an application: EyeUnderstand.

prediction of subjective comprehension levels. Notably, the
improvement in F1 scores suggests that the method helps
balance precision and recall, reducing the risk of overfitting
and enhancing the generalization of the models across
different cultural contexts.

The higher accuracy observed in the Japan dataset could
also reflect the method’s adaptability to specific gaze patterns
prevalent among Japanese participants. This adaptability is
crucial for developing culturally responsive educational tools
that cater to diverse student populations. By integrating the
sliding windows approach, we improved model performance
and gained deeper insights into the temporal patterns of stu-
dent engagement during online lectures. This enhancement
paves the way for more sophisticated and real-time feedback
mechanisms for effective online education.

VI. END-USER APPLICATION
This section introduces our pilot application, EyeUnder-
stand,4 which is shown in Figure 7. The application visualizes
comprehension levels using Tobii eye-tracking data.

4https://anonymous.4open.science/r/eyeunderstand/

A. USER INTERFACE
Figure 7 provides an overview of the web application which
analyzes the lecture video viewers through eye-tracking.
Participant first enter the lecture ID, which corresponds to the
YouTube ID. Then, add the data of participant while watching
the lecture collected by Tobii eye-tracker. Once inserted,
the datas processing starts and visualize the comprehension
levels. User can select participant IDs to select the target users
and also threshold to make the comprehension level range.

B. USER STUDY
We conducted a feedback survey of the web application
EyeUnderstand to gather insights about its usability, under-
standability, and usefulness. These insights will guide future
improvements to enhance the tool’s effectiveness for students
and lecturers.

1) STATISTICS OF USER STUDY PARTICIPANT BACKGROUND
Figure 8 shows the statistics of the overall backgrounds
of the participants. The survey collected responses from
28 participants, primarily students and professionals from
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FIGURE 8. Participants distributions of the EyeUnderstand user study.

FIGURE 9. Overall rating of the user-study survey on usability of EyeUnderstand.

academia and industry. Most participants were students aged
19 to 32 (mean age: 25.3). Key demographic distributions are
as follows:

• Gender:Male (75%), Female (21.4%), Prefer not to say
(3.6%).

• Nationality: Indian (78.6%), Japanese (10.7%), Other
nationalities (10.7%, including Rwandan, Chilean, and
Pakistani).

• Occupation: Students (82.1%), Industry professionals
(14.3%), Academic researchers (3.6%).

Regarding familiarity with eye-tracking technology, 78.6%
of participants reported familiar, 14.3% were unfamiliar, and
7.1% were unsure. These demographics suggest a predom-
inantly young, student-oriented sample with considerable
prior knowledge of eye-tracking methodologies.

2) USABILITY TESTING RESULT OF EYEUNDERSTAND
Figure 9 presents the overall results from the usability testing
conducted during the user study. Approximately 92.9% of
participants understood the application’s concept, while 7.1%
remained uncertain.

Participants gave navigation an average rating of 4.25 out
of 5 (scale: 1 = Very Difficult, 5 = Very Easy). 42.9% (12
participants) rated navigation as Very Easy (5), 42.9% (12

participants) as Easy (4), 10.7% (3 participants) were Neutral
(3), and 3.6% (1 participant) found it Difficult (2).

The average usability rating among students was 4.43 out
of 5, with 89.3% rating between 4 and 5. Lecturers reported an
average rating of 4.54 out of 5, with a 92.9% rating between
4 and 5. Participants specifically highlighted the following
strengths:

User feedback (1): Pinpointing video timestamps where
students lacked comprehension helps lecturers improve
content delivery.

User feedback (2): Setting a none comprehensive threshold
allows targeted review of problematic sections.

User feedback (3): The color-coded comprehension bars
(green/yellow/red) are intuitive for identifying trends.

Based on this feedback, it is confirmed thatEyeUnderstand
performs effectively for its intended users.

VII. LIMITATIONS AND FUTURE WORK
This section explains limitations and future work on the
comprehension estimation model and the performance of the
EyeUnderstand application.

A. COMPREHENSION ESTIMATION MODEL
The first limitation of our study is its focus on only three
lecture categories chosen to represent diverse instructional
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styles. Although these categories provided a solid basis for
analysis, they do not encompass the entire range of lecture
methodologies. Future research should include a broader
array of instructional modalities for a more comprehensive
understanding.

Another limitation is the binary classification of com-
prehension. Comprehension inherently exists on a contin-
uum, and a binary approach does not fully capture its
varying degrees of certainty. Post-annotation also poses
challenges because participants may struggle to recall uncer-
tain moments after 50 minutes of viewing. While real-time
annotation could mitigate this issue, it risks distracting
participants during the task. Future work will explore human-
in-the-loop annotation techniques and regression models to
capture comprehension levels better.

Another limitation is the small sample size (20 partici-
pants), which may not capture the full range of individual
variation. A more extensive and diverse participant pool
would improve the generalizability of our findings. Due
to this concern, the Transformer model underperformed in
our study, but it may yield better results with more data.
Expanding the dataset is thus a priority for future research.

Participant self-esteem may further influence self-
annotation accuracy, as individuals with higher self-esteem
might offer more nuanced responses. Future studies should
investigate the influence of domain knowledge and demo-
graphic factors on comprehension estimation to account for
these differences.

We plan to enhance learning outcomes by estimating com-
prehension levels in real-time, integrating features such as
question prompts or varied lecture difficulty. Investigating the
relationship between domain knowledge and eye movements
will also be a key focus. Ultimately, we aim to develop
an automated comprehension estimation application that
delivers real-time feedback to lecture creators and provides
summary insights for students.

B. IMPROVEMENTS TO OUR APPLICATION
Despite our application’s current promise, its most pressing
limitation is accessibility. Eye-tracking hardware remains
prohibitively expensive for widespread, individual use,
particularly in large classrooms or resource-constrained
settings. To address this challenge, our future work will
explore replacing specialized hardware with webcam-based
eye tracking [44], [45], which can estimate comprehension
levels [2], [46] using readily available, low-cost devices.
This approach has the potential to significantly broaden our
user base while lowering financial barriers and improving
scalability.

Another key area for improvement lies in the user
interface. Meaningful and intuitive visualization is essential
to translate complex eye-tracking data into actionable insights
for educators. By offering clear, time-aligned representations
of student engagement and comprehension, instructors can
more easily identify pivotal moments of uncertainty and

success, tailoring their teaching strategies for maximum
impact.

Finally, the lack of long-term evaluation remains an
important gap. Future studies will examine whether this tool
can become an integral part of an educator’s daily workflow,
not only for refining lectures but also for supporting students’
study habits and deepening their comprehension. In-depth,
longitudinal analyses will help us determine the true efficacy
and sustainability of using eye-tracking data to enhance both
teaching practices and learning outcomes.

VIII. CONCLUSION
This study collected eye-tracking data to predict compre-
hension levels during video lectures. Twenty participants
from Germany and Japan watched 50-minute lecture videos
covering three domains. Participants completed a post-survey
and self-annotated their comprehension levels using the
open-source tool LabelStudio. We applied an LSTM model
to the preprocessed dataset, achieving an F1 score of
0.886 for predicting binary comprehension levels. The
analysis identified pupil diameter as a significant feature
for estimating comprehension in German and Japanese par-
ticipants. We also introduce EyeUnderstand, the web-based
application for visualizing the results of the comprehension
estimation through eye-tracking.We recruited 28 participants
for the user study. As a result, 89.3% of the students and
92.9% of the lecturers confirmed that our application is
practical.
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