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Abstract—Predicting crowd flow is crucial for decision-making
to mitigate various risks. For instance, in social problems such
as traffic congestion and over-tourism, countermeasures can be
taken by predicting crowd flows in advance. Typically, people visit
multiple Points of Interest (PoI) for various purposes. Previous
work has proposed methods to incorporate the behavioral charac-
teristics of people in different areas, such as dining areas or office
areas, into machine learning models. However, they have not
considered the specific behavioral characteristics associated with
each PoI, such as when restaurants or train stations experience
peak periods. Recently, there has been an increase in the ability
to handle large amounts of location information, leading to a
growth in the volume of individual trace data. In this study,
we propose a crowd flow prediction method that aggregates
large-scale individual trace data of movements between PoIs
and considers the behavioral characteristics associated with each
PoI. We define this information as time series PoI stay counts
generated from trace data collected from mobile phones. Using
this, we developed a machine learning model to predict the
number of people in an area (mesh) over the next several minutes
to hours. This prediction is based on the number of people staying
at each PoI (category) in neighboring areas (meshes). We applied
this approach to densely populated areas in central Tokyo, where
congestion is a significant concern, and conducted validation. The
results showed that the method utilizing time series PoI stay
counts improved prediction accuracy by up to 50% compared
to methods that did not use it. Additionally, the Mean Absolute
Percentage Error (MAPE) for predicting the number of people
staying 1 hour later was only 2.57%.

Index Terms—Cloud flow prediction, population data, PoI
congestion

I. INTRODUCTION

Predicting human behavior has become one of the most
important keys to solving social problems in recent years.
The Covid-19 in 2020 spread rapidly throughout the world
and became a social problem. Since avoiding human contact is
effective in preventing the spread of infection, it was necessary
to know in advance where congestion is expected and to
plan activities accordingly. In urban areas and sightseeing
spots, traffic congestion or overtourism is caused by the large
number of people gathering. In such problems, we can take
countermeasures in advance by predicting human behavior.
Thus, predicting human behavior has become an important
means of solving contemporary social problems.

Existing work focuses on predicting crowd flow and transi-
tion probabilities in specific areas based on datasets such as the

number of people, taxi pick-up/drop-off, and ride-sharing [1]–
[14]. These studies have seen significant advancements by
utilizing machine learning techniques to reduce prediction
errors and incorporating information related to human behavior
as features. Particularly, data representing locations known as
Points of Interest (PoI), such as Tokyo Tower and Senso-ji
Temple, have been reported to be effective [15], [16]. For
instance, if there are several restaurants or bars serving as
Points of Interest (PoI) in the area, it can be classified as a
dining area. This would enable consideration of the fact that
many people gather in that area during dinner time. Various
methods have been proposed to integrate the characteristics
of an area based on the number and type of each PoI and
incorporate them into machine learning as features.

However, existing work only reflect the characteristics of an
area and do not consider behavioral characteristics of people
at each PoI, such as the level of crowding in restaurants or
stations. Additionally, aggregated data on the number of people
and taxi data in specific areas do not capture the individual
purposes behind each person’s actions. In recent years, with
the proliferation of applications capable of handling location
information, it has become possible to manage vast amounts
of individual trace data. Therefore, we believe that by success-
fully aggregating individual trace data, it is possible to extract
the characteristics of people’s behavior for each PoI, such as
how many people stayed at each PoI, thereby reducing the
predicting error.

Furthermore, individual trace data, being time-series data,
allows for the consideration of temporal congestion levels at
each PoI, which was not possible previously. For instance,
intuitively, one can imagine that a cafe is crowded at 3 p.m.
and emptier at 9 p.m. However, when predicting crowds in
large-scale areas, such as cities, such temporal congestion at
each PoI was not considered. While there are studies predicting
crowd flow by placing sensors to measure congestion levels
in limited areas like stadiums or stations, achieving this on a
large scale (city-wide) has been challenging. By aggregating
individual trace data, it becomes possible to represent conges-
tion levels at each PoI at different times, thus enabling the
consideration of temporal congestion levels.

In this study, we utilize a large amount of individual trace
data, which has not been previously addressed, and aggregate
it to generate information on the number of people staying at



each PoI at different times. We define this as time series PoI
stay counts and use it to develop a prediction model for crowd
flow. The prediction model was experimentally evaluated to
determine whether it can reduce prediction errors compared
to aggregated data typically used in existing crowd prediction
methods. As a result, the method utilizing time series PoI
stay counts was confirmed to improve predictive accuracy
compared to the method not utilizing them, demonstrating its
effectiveness.

II. RELATED WORK

There are two types of studies related to crowd movement:
one is to estimate the crowd density for a specific location,
and the other is to predict the crowd flow for the whole city.
In addition, studies focusing on PoI, which represents the
characteristics of an area, are described, and these existing
studies are summarized.

A. Crowd Density

In the estimation of crowd density, there are two approaches:
one is the image processing approach using a camera, and
the other is the measurement approach by using Bluetooth
of mobile phones and sensors [17]–[20]. Recently, a method
to measure the crowd density from the angular velocity of
a tablet has been proposed [21]. This approach, based on
the installation of images, sensors, etc., is an estimation of a
specific location and is not suitable for the estimation of the
entire city, which is the target of this research.

B. Crowd flow

Many deep learning and machine learning methods have
been proposed in crowd flow prediction [1]–[11]. In deep
learning and machine learning methods, two types of features
are used for prediction: spatial and temporal features. Spatial
features are geographical features, such as road information
in the target area, while temporal features are time-dependent
regularities of human behavior. These features contribute
greatly to the prediction model. These studies predict future
flows from past flows by using data on the inflow and outflow
of people into and out of an area. However, the movement
of people will be affected by the characteristics of the area.
Zeng et al. showed that the movement of people and the PoI
are highly related [22]. Therefore, we focus on the PoI, which
indicates the characteristic of the city.

C. Crowd prediction by using PoI

In crowd prediction, some proposals have been made using
PoI [12]–[14], [16]. Wang et al. proposed a method that can
predict the inflow and outflow of people in an area using the
number and category of PoI [12]. They also discussed the
motivations that cause people to move and the mobility of
people for each cause. Focusing on the relationship between
human activities and PoI information, Jiang et al. proposed a
prediction method that combines CNN and LSTM with human
trajectory data and PoI data as input [16]. By dividing the
prediction area into meshes and creating a single image of

the number and distribution of PoI for each divided mesh, the
characteristics of each mesh are incorporated in the CNN. By
doing so, They developed a predicting model that effectively
incorporates the characteristics of each area and human tra-
jectory data.

However, these existing methods have two problems. One
is the datasets. In urban areas, there are various means of
transportation and a wide variety of flows. For this reason,
we believe that a method utilizing human mobility datasets,
rather than just traffic data, would be effective. Additionally,
aggregated data on the amount of inflow and outflow into an
area does not capture the purpose of each individual’s activi-
ties. The second issue concerns the behavioral characteristics
of people at each PoI. While the characteristics of each area
can be incorporated, the specifics of how many people are
staying at each PoI and at what time are not accounted for.
We hypothesize that integrating the characteristics of each
PoI, rather than each area, will result in a further reduction
in prediction error.

III. DEFINITION OF TIME SERIES POI STAY COUNTS

In this section, we define time series PoI stay counts. In this
study, we generate crowd behavior information by aggregating
trace data indicating when each individual stayed at which
PoI. This information includes the purpose of each individual’s
actions and captures the movement of people between PoIs
over time. We define this information as time series PoI stay
counts in this study. This time series PoI stay counts must
meet the following two requirements:

• The number of people ”staying” at PoI
• Identifiable categories indicating the purpose of actions

In this section, we will discuss these two requirements in
detail.

A. The number of people staying at PoI

time series PoI stay counts contains the individual’s purpose
of action, reflecting the movement of people between PoIs
over time. In order to include such information, the primary
requirement is information on people’s stay in PoI. People
have a purpose for staying at a location, and upon finding
their next destination, they move there. Thus, the location
of stay represents the purpose of individuals’ actions. On
the other hand, while in transit, passing through a PoI does
not reflect the purpose of action. For example, considering
a ”restaurant” as a PoI, during a stay, it can be assumed
that people are dining and will move to another location
after an hour. However, while in transit, passing through a
restaurant implies no indication of the next destination. Thus,
stay information reflects the purpose of individuals’ actions,
whereas in transit, the purpose of action is not reflected.

The next requirement involves information about the num-
ber of people. By observing changes in the volume of people
staying at a PoI, we can capture the movement of peo-
ple between PoIs over time. For instance, reconsidering the
”restaurant” example, if there were 10 people at the restaurant
at 7 p.m. and this number decreased to 5 by 8 p.m., it can



be anticipated that 5 people have finished dining and moved
on. Therefore, it can be intuitively expected that there would
be an increase in the number of people at the station for their
return home. Thus, changes in the volume of people staying
at a PoI represent the movement between PoIs.

B. Categories of PoI with identifiable purposes of actions

It is necessary to categorize the PoI into categories where
the purpose of actions is identifiable. If PoI categories are too
fragmented, the data will be sparse and cannot be incorporated
into the model. On the other hand, if the categories are too
integrated, the purpose of the action becomes unclear. For
example, if the category is restaurant, the purpose of the action
is known as a place to eat, but if the category is food, the
purpose of the action is not known because it is not known
whether the place is a restaurant or a supermarket. Therefore,
it is necessary to categorize the categories appropriately so
that the purpose of action can be understood.

IV. MAKING TIME SERIES POI STAY COUNTS

In this section, we describe the method of making time
series PoI stay counts from mobile GPS trajectory data. The
making step consists of four processes: stay determination,
PoI identification, data formatting, and aggregation, in order
to meet the requirements. In this study, we use trajectory data
purchased from Agoop, Inc [23]. as mobile GPS trajectory
data, and PoI data from Agoop for PoI identification.

A. Dataset

The trajectory data is obtained through the GPS functional-
ity of smartphones, tablet devices, etc., with the consent of the
user, by incorporating Agoop’s SDK into applications provided
by Agoop and its partner applications. The data to be used
includes Daily ID, GPS data (latitude, longitude), date, GPS
accuracy, prefecture code, and municipality code. Daily ID is
a unique ID assigned to each user, with a new ID assigned to
each user every day at midnight. Therefore, by connecting the
same Daily ID within the same day, it is possible to understand
the user’s movement trajectory.

The PoI data comprises 456,450 entries covering locations
within Tokyo. This dataset includes listing names, major indus-
try classifications, sub-industry classifications, sub-category
names, prefecture codes, latitude, and longitude information.
In this study, we utilized the sub-industry classifications and
major industry classifications, which are categorized to reflect
the purpose of actions. There are 195 categories in the sub-
industry classification and 17 categories in the major industry
classification. We define these two classifications in this study
as the ”PoI Small” (Table I) and ”PoI Large”(Table II) respec-
tively.

B. Process

1) Stay determination: In this study, a simple algorithm
was applied to determine stay because of the need to process
a large amount of data for 130,000 people. If the distance
between two consecutive trajectory data points (at least one

TABLE I
POI SMALL (EXCERPT)

Bicycle/parking Railways/stations/Parking
Clothing (retail) Catering/home delivery
Rental cars Department stores/supermarkets
Electrical Office and equipment
(wholesale) Retail

TABLE II
POI LARGE

Wholesale Sports/Hobbies/Entertainment/Leisure
Restaurant Medical/Medicine/Insurance
Publishing/Printing Transportation/Warehouse
Construction Manufacturing/Processing
Other Services Schools/Hobby classes/Libraries
Government/Organizations/Welfare
Automobiles/Motorcycles/Bicycles/Driving
Travel/Tourism/Hot springs/Hotels
Real Estate/Rental/Exhibition space
Finance/Insurance/Securities
Agriculture/Forestry/Fisheries
Electricity/Gas/Telecom./Broadcasting/Newspapers

minute apart) was 100 m or more, the data was defined as
”move” and if the distance between two trajectory points was
less than 100 m, the data was defined as ”stay”. The distance
was calculated using the Hubeny formula. The threshold value
of 100 m was chosen because the error radius of the data used
was 40 m (80 m in diameter). In some studies, the threshold
for stay is roughly 100m [24], [25].

2) PoI identification: For data identified as ”stay,” both PoI
Small and PoI Large were assigned using the PoI dataset. From
the PoI candidates within the mesh to which the trajectory data
belongs, the distance between the PoI’s latitude and longi-
tude information and the latitude and longitude information
obtained from the trajectory data was calculated using the
Hubeny formula. The PoI information with the closest distance
was then utilized. Additionally, for data identified as ”move,”
the PoI category ”move” was assigned.

3) Data formatting: The sampling rate is non-uniform
because the time interval of the collected data varies depending
on the OS and application status of the smartphone. Therefore,
the data was supplemented at 10-minute intervals by referring
to the previous and following values to achieve a uniform
sampling rate.

4) Aggregation: The generated data consists of User ID,
Time (in 10-minute intervals), Mesh ID, and PoI category (PoI
Large, PoI Small). These data are aggregated per 1km mesh,
resulting in the generation of time series PoI stay counts. This
time series PoI stay counts includes data for Mesh ID, Time (in
10-minute intervals), PoI category, and the number of people.
We show the time series PoI stay counts in Table III.

V. CROWD FLOW PREDICTION MODEL

We developed a crowd flow prediction model using the
generated time series PoI stay counts. Supervised learning was
performed using as input time series PoI stay counts up to the
present for the mesh to be predicted and the nine surrounding



TABLE III
TIME SERIES POI STAY COUNTS

Mesh ID Time PoI category Counts
Mesh A 9:00 Restaurant 13
Mesh A 9:10 Restaurant 14
Mesh B 9:50 Schools 45

meshes adjacent to the mesh, with the correct answer label as
the number of future people of the mesh to be predicted.

Considering that including too many meshes as input may
introduce irrelevant information and not necessarily decrease
prediction errors, we focused on selecting meshes strongly
related to the target mesh. Therefore, in this study, we used
the target mesh along with its surrounding meshes as inputs.

Since the objective of this study was to validate the
reduction of prediction errors using time series PoI stay
counts as a feature, we opted for modeling techniques that
could straightforwardly discern the contribution of this feature.
Therefore, we utilized three basic regression analysis methods:
Random Forest, XGBoost, and LightGBM. These models are
simple to use and widely applicable across various tasks.
Additionally, they can be trained with small datasets and tend
to reflect feature importance in the results, unlike deep learning
approaches. The parameters were set using the default values
of the Python machine learning library, Scikit-learn [26].

Furthermore, to consider the temporal aspects, we incorpo-
rated lag features. These features not only include the current
data but also incorporate past data as input, thereby increasing
the dimensionality of the features. As a result, the features for
a certain time include information from past time series PoI
stay counts.

VI. PROBLEM DEFINITION

In this study, we aim to predict crowd flow using time
series PoI stay counts and verify if it reduces prediction errors.
We set up the following problem and conduct experiments to
evaluate it.
Problem Statement: Predicts the number of people in the
target mesh in the future based on the number of people in
each mesh in the past in the target area divided into meshes.

A. Experimental Method
To verify the effectiveness of time series PoI stay counts,

experiments were conducted from two perspectives: (1) a com-
parison between time series PoI stay counts and aggregated
data, and (2) the impact of lag features.

1) Comparison between time series PoI stay counts and
Aggregated Data: In previous studies, predictions were made
using aggregated data such as the number of people staying
in a specific area and inflow and outflow of people. In this
experiment, to confirm the effectiveness of time series PoI stay
counts, we compared aggregated data, represented by ”Head
count(Number of people)” with time series PoI stay counts
categorized by PoI Large and PoI Small. The ”Stay/Move”
created by the stay determination was also used. The number
of people staying after 10 minutes, 1 hour, and 3 hours was
predicted.

Fig. 1. Tokyo station

2) Lag Features: Considering the temporal aspect of human
behavior is crucial as behaviors evolve over time. We explored
the effectiveness of lag features in reducing prediction errors
by incorporating historical information as features. The in-
puts remained consistent with those mentioned earlier: ”Head
count” ,”PoI Large,” ”PoI Small,” ”Stay/Move.” The number
of people staying after 10 minutes, 1 hour, and 3 hours
was predicted. We conducted experiments to examine three
different levels of past information: ”10 minutes prior,” ”up
to 30 minutes prior (10 minutes prior, 20 minutes prior, 30
minutes prior),” and ”up to 60 minutes prior (10 minutes
prior, 20 minutes prior, 30 minutes prior, 40 minutes prior,
50 minutes prior, 60 minutes prior).”

B. Experimental Settings

The target mesh for prediction was set in Chiyoda-ward,
Tokyo. The target area is shown in Fig. 1. This area is centered
around Tokyo Station, making it a high-traffic location where
sufficient data can be obtained. The experiment period was set
from July 1, 2020, to July 31, 2020, excluding holidays and
public holidays, from 8:00 to 23:00. This period is after the
lifting of the state of emergency and marks the beginning of
increased mobility.

C. Evaluation Method

In this experiment, common metrics for regression analysis,
namely Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE), were used for evaluation. These
metrics were calculated based on the predicted number of
people staying in the target mesh and the actual number
of people staying in the mesh, providing two indicators for
evaluation.

VII. RESULT

The results of the validation of the effectiveness of time
series PoI stay counts and the prediction results using lag
features are shown.

A. Effectiveness of Time Series PoI Stay Counts

The experimental results are presented in Table IV. Eval-
uating the effectiveness of time series PoI stay counts, in
the prediction for three hours later, compared to Head count,
RMSE decreased by approximately 50% for PoI Small, and
MAPE decreased by up to 11% compared to Head count.
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Comparing Head count with time series PoI stay counts,
significant reduction in prediction errors was observed for
one hour and three hours later, while no decrease in pre-
diction error was observed for ten minutes later. Comparing
PoI Small and PoI Large, it was found that the prediction
error decreased more for PoI Small with a larger number of
categories three hours later. The number of categories was
found to influence the prediction of crowd flow, with a greater
number of categories leading to a decrease in prediction error.
Moreover, in the other two prediction models (Random Forest
and XGBoost), the utilization of time series PoI stay counts led
to a reduction in prediction errors, affirming their effectiveness.

B. Consideration of Time Series with Lag Features

The results for lag features are shown in Fig. 2. This
graph show the cases where lag features were included and
excluded as inputs. For the prediction three hours later,
including lag features resulted in a decrease in prediction
error. This indicates the effectiveness of time series features.
Furthermore, the comparison of lag features for ”Head count”,
”PoI Large”, ”PoI small”, ”Stay/Move” is depicted in Fig. 3.
In the prediction for three hours later, PoI Small exhibited the
smallest error. A one-hour lag showed lower error compared
to a 10-minute lag, suggesting that lag features are effective
in predicting crowd flow.

VIII. DISCUSSION

The experiment results revealed that using time series PoI
stay counts resulted in a reduction of prediction errors com-
pared to predictions based solely on Head count. It also be-
came evident that the number of categories in PoI classification
affects predictions. While there was no significant difference in

Fig. 4. Transition of Stay Counts for Target Mesh, 2020/07/01

predictions between 10 minutes and 1 hour ahead, a significant
difference was observed for data 3 hours later. This suggests
that the behavior patterns of people within the target area,
which includes many stations and department stores, play a
role in prediction difficulty. It’s presumed that within the target
area, people tend to stay within a mesh for longer periods
after 10 minutes or 1 hour, while the likelihood of movement
increases after 3 hours, thereby demonstrating the effectiveness
of time series PoI stay counts. Additionally, considering the
ease of prediction, the transition in the number of people
within the predicted mesh per hour is shown in Figure 4. As
the graph shows, the change in the number of people per hour
is minor, but substantial over a span of 3 hours. Therefore,
predicting 3 hours ahead is more challenging than 1 hour
ahead. With the increased information provided by time series
PoI stay counts compared to merely the number of people, the
prediction errors could be reduced. Regarding lag features,
the addition of such features reduced prediction errors for
data 3 hours ahead. This implies that, similar to the previous
observation, while past information may not be effective for
10 minutes or 1 hour predictions due to the low variability in
staying patterns, it becomes beneficial for 3-hour predictions
due to significant changes in the number of people staying.

IX. CONCLUSIONS

In this paper, we proposed a crowd flow prediction method
using time series PoI stay counts with the aim of support-
ing behavior planning for crowd avoidance. The evaluation
results showed that using time series PoI stay counts led
to a maximum 50% reduction in RMSE for predicting the
number of people in the target mesh 3 hours ahead compared
to predictions based solely on Head count. Additionally, we
demonstrated that the method could estimate the number of
people 1 hour ahead with a MAPE of 2.57%. The method
we proposed, which utilizes time series PoI stay counts, is
simple yet powerful. It can easily be combined with existing
deep learning methods, enabling the achievement of higher
accuracy in crowd flow prediction.

For future work, we are planning the comparison with
existing approaches, which could not be validated in this
study, and the model utilizing time series PoI stay counts.
Additionally, reflecting effective features in predictions and
considering the temporal nature of time series PoI stay counts



TABLE IV
RUSULT OF PREDICTION(LIGHTGBM)

Head count Stay/Move PoI Large PoI Small
Prediction time RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
10 min later 13.62 1.36 14.26 1.39 16.50 1.62 17.90 1.79
1 hour later 55.70 4.52 33.07 2.93 29.78 2.57 29.52 2.65
3 hour later 128.96 16.13 84.55 8.01 71.11 6.43 64.08 5.66

are crucial. The proposed method in this study does not fully
consider the temporal aspects of PoI Stay information since
it utilizes time series PoI stay counts captured at a specific
moment of movement. Thus, factors such as the transition
patterns between PoIs and the duration of PoI stays are
not fully incorporated. To address this, analyzing individual
trajectories and clustering them can help extract transition
probabilities between PoIs, thereby revealing crowd behavior
patterns between PoIs. Furthermore, although our proposed
model used 9 meshes as input for predicting behavior, it’s
possible that individuals may travel to farther locations or
that inflows from meshes beyond the 9 considered may occur
within 3 hours. Therefore, expanding the input mesh range
and considering the relationships between meshes could lead
to further reduction of prediction errors.
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