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Abstract—Enabling federated learning in opportunistic net-
works unlocks the potential for machine learning in challenging
environments like disaster zones and remote regions. However,
the divergent models induced by dynamic node encounters, com-
bined with complete parameter overlap in model-homogeneous
training lead to catastrophic interference, which disrupts training
progress. Furthermore, when whole models must be transmitted,
nodes with shorter contact duration are limited from partici-
pating in the training process. To address these challenges, we
propose a different approach for training neural networks in
opportunistic settings that leverages independent subnetworks
and sequential training. We partition the original neural network
into non-overlapping subnetworks and assign each to a unique
node. These subnetworks are then trained and exchanged repeat-
edly during node encounters, exposing them further to diverse
datasets. As a consequence, we achieve parallel and conflict-free
progress while minimizing participation costs. Our experiments
demonstrate that continuous training and subnetwork accumula-
tion foster the development of a more robust model. Moreover, by
utilizing pre-trained backbones as feature extractors, we achieve
a test accuracy of 75.06% on MEDIC’s disaster damage severity
assessment task, demonstrating that the approach can be adopted
in resource-constrained and dynamic scenarios in the real world.

Index Terms—opportunistic networks, federated learning, par-
tial training

I. INTRODUCTION

The sustained growth of data produced by sensor-equipped
edge devices and growing concerns in data privacy underscore
the importance of federated learning as a key enabler of
edge intelligence [1]. By 2025, IoT devices are estimated to
generate 79.4 zettabytes of data, presenting new opportunities
to train machine learning models [2]. However, these data
often reside on private devices or are too costly to transport.
Federated learning [3], by allowing data to reside where they
are generated, not only safeguards potentially sensitive data
but also eliminates the bandwidth and storage costs associated
with its centralization. Moreover, by spreading computational
demand, federated learning lowers entry barriers for participa-
tion and leads to a more democratic training process.

Integrating federated learning with Opportunistic Networks
(OppNets) [4] unlocks collaborative machine learning in chal-
lenging environments where traditional network infrastruc-
ture is impractical or unavailable. These environments range
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from remote regions lacking conventional network access
to scenarios arising from natural disasters or other disrup-
tive events. Furthermore, opportunistic networking techniques
can be leveraged in urban areas to capitalize on on-device
communication resources and alleviate infrastructure network
load [5]. By allowing nodes to exchange model updates
over device-to-device (D2D) connections, OppNets enable
nodes to aggregate knowledge and collectively improve the
performance of machine learning models even in the absence
of continuous network connectivity [5]–[7]. Ultimately, this
opens new avenues for smart computing in diverse fields, such
as rural IoT and disaster response.

The unique characteristics of OppNets necessitate adjust-
ments in federated learning’s original formulation to accom-
modate the additional constraints they present. In opportunistic
networks, communication windows are transient and last only
for the duration of encounters between nodes [4]. Unless
assumptions are made about the nodes pausing to facilitate
prolonged transmissions, natural encounters are likely to sup-
port only conservative data payloads. In addition, the dynamic
and often partitioned network topology makes it impractical
to deploy a central server, as typically done in traditional
federated learning, to orchestrate the training process. Thus,
in existing works, nodes perform model aggregation within
the context of their time-varying neighborhood [5]–[7]. In the
extreme case, a node can be isolated for extended periods,
making its model stale in comparison to the rest of the nodes
in the network. The divergent models induced by the dynamic
nature of encounters among nodes, combined with the com-
plete overlap between trained parameters lead to catastrophic
interference, which disrupts training progress.

In this study, we devise a different strategy to train neural
networks in opportunistic scenarios that addresses the chal-
lenges mentioned above. Motivated by recent work in Inde-
pendent Subnetwork Training [8] and Sequential Federated
Learning [9], our approach divides the original neural network
into nonoverlapping subnetworks that are uniquely assigned to
each participant. These subnetworks are then trained locally
and exchanged with other nodes upon encounter. As subnet-
works move from one node to another, they are exposed to
different local datasets, allowing them to learn further. Since
subnetworks do not share neurons, their individual training



progress is unaffected by the status of other subnetworks,
making their integration into the full model inherently conflict-
free. Finally, the smaller size of the subnetworks implies lower
bandwidth and shorter contact duration required for model
exchange, which encourages higher participation.

Contributions: Our main contributions are as follows:
1) We devise a new strategy for training neural networks

in opportunistic settings, utilizing independent subnet-
works and sequential training to prevent aggregation
conflicts and enhance generalization through the sub-
network’s continual exposure to diverse datasets while
reducing participation cost;

2) We develop a discrete event simulator for opportunistic
federated learning by extending FedML [10]. Through
various experiments, we explore our approach’s training
dynamics and the practical use of pre-trained backbones
in transfer learning scenarios;

3) We apply our approach with pre-trained backbones to
classify damage severity levels in disaster scene im-
ages where node movement is governed by the random
waypoint mobility pattern on real-world road networks,
demonstrating its applicability in dynamic and resource-
constrained settings;

4) We compare our approach with the model-homogeneous
scheme and show its robustness to divergent and stale
models induced by dynamic and disjoint topologies.

II. RELATED WORK

In this section, we explore the transition from centrally
orchestrated to decentralized federated learning, alongside a
review of existing research on opportunistic federated learn-
ing. We then discuss Independent Subnetwork Training and
highlight its interesting properties, particularly its role in en-
abling federated learning in resource-constrained and dynamic
environments. Lastly, we contextualize the significance of our
study within this landscape.

A. Decentralization of Federated Learning

Since its original formulation as described in the seminal
paper by McMahan et al. [3], federated learning had been
subject to multiple modifications to make it more suited to dif-
ferent computing scenarios where the standard assumptions do
not apply. One of the main limitations of federated learning’s
vanilla formulation is the central server, which synchronizes
the learning process into training rounds. The server’s role
in aggregating the local models received from participating
nodes is important to model convergence. However, as in any
distributed system, the presence of a central entity signifies
a potential bottleneck, single point of failure, and scalability
issues [2]. In other cases, such as multi-vendor or multi-
institutional collaborations, a third-party server may be un-
desirable due to trust issues [7], [11].

Decentralized federated learning (DFL) [2] was proposed to
address the limitations imposed by the central orchestrator. In
DFL, participants establish peer-to-peer connections, exchange
models with each other, and perform local model averaging.

Assuming full connectivity among all nodes, a consistent
global model can be derived at each round. However, if the
nodes are not fully connected, additional techniques are re-
quired to ensure consistent aggregation of the models. Hence,
studies such as [12], [13] leverage consensus theory, treating
participating nodes and model parameters as agents and states,
respectively. The objective is for these agents to reach a
common state through an iterative process of exchanging state
information and updating local states over successive rounds
of communication.

Opportunistic federated learning is a step further into re-
alizing a truly infrastructure-free federated learning system.
A subclass of DFL first introduced in [6] considers the
training of machine learning models without relying on fixed
infrastructure. Instead, model exchanges are supported using
on-device wireless networking interfaces such as Bluetooth
or WiFi. The limited range of these interfaces, combined with
device mobility, results in a topology that is both time-varying
and partitioned. Consequently, communication windows are
ephemeral, lasting only as long as the encounter between
two nodes. These characteristics render the implementation
of consensus-based solutions impractical and challenging.

B. Federated Learning in Opportunistic Settings

Several works have explored implementing federated learn-
ing in the opportunistic setting [5]–[7], [14]. These approaches
assume a model-homogeneous scheme where participants train
all parameters of the same model. Concurrent training of the
same model in full under opportunistic scenarios inevitably
results in model divergence due to variations in node mobil-
ity. Hence, current works on opportunistic federated learning
abandon the notion of a global model and pursue the training
process as an egocentric or personalized one. Lee et al. [6]
tackle the problem of training models that are tailor-fitted
to each participant’s target distribution. In their approach,
training occurs within the duration of an encounter. Hence, to
ensure the utility of collaboration, participants first consider
each other’s label distribution and the predicted encounter
duration. Tomita et al. [5] leverage federated learning for
training a tourism object detection system using only pairwise
connection between participants with a limited number of
model exchange. A regressor predicts the resulting accuracy of
a potential model aggregation between two participants using
their current accuracy. Ochiai et al. [7] adapt federated learning
in wireless ad-hoc networks. They assume that the participants
are able to send and receive their updated models to all nearby
nodes, which under short-lived encounters is difficult unless
model sizes are constrained. Finally, Suzuki et al. [14] propose
a federated learning framework over an extraterrestrial delay-
tolerant network. As encounters between participants (space
crafts) are likely to be sparse, they assume a centralized
approach where a ground station acts as an orchestrator.

C. Independent Subnetwork Training

Recently, Independent Subnetwork Training (IST) [8] was
proposed as a distributed scheme for training neural networks.



IST employs a partial training (PT) approach, wherein partic-
ipants train smaller parts of the original network. However,
unlike other PT-based schemes [15], [16], subnetworks in IST
are non-overlapping making their training progress indepen-
dent and unaffected by the status of other subnetworks. In
the context of opportunistic federated learning, this eases the
requirement for nodes to frequently encounter all other nodes
to achieve consistent model aggregation and simplifies the
integration of subnetwork updates into the full model since
no conflict resolution is required. Also, the smaller subnet-
works significantly reduces the compute and communication
requirements, resulting in increased participation despite the
short-lived encounters between nodes.

D. Position of this Study

Existing solutions to federated learning in the opportunistic
setting assume the model-homogeneous case where partici-
pants collaborate to train all parameters of the same model.
The complete parameter overlap, in conjunction with the time-
varying and likely partitioned topology, inevitably leads to
model divergence. Furthermore, when participants are iso-
lated for a long time, their model parameters become stale.
Aggregating model parameters under such conditions leads
to catastrophic interference. In addition, when whole models
must be exchanged, nodes with shorter encounter duration will
be limited from participating in the training process.

To address these problems, this study leverages indepen-
dent subnetwork training to allow participants to train non-
overlapping subnetworks of the whole model. However, in
contrast to its original implementation, and due to the absence
of a central server, subnetworks are not retrieved, and the
original network is not repartitioned at each round. Instead,
subnetworks are exchanged by the participants on encounter,
exposing them to diverse local datasets continuously.

III. METHODOLOGY

A. Preliminaries

Let C = {c0, c1, ..., cN−1} denote the set of N participating
nodes in the opportunistic federated learning scenario. Each
node ci possesses its own dataset Di, and the virtually merged
dataset is represented as D =

⋃N−1
i=0 Di. Typically, for any pair

of nodes ci, cj ∈ C, i ̸= j, Di ∩ Dj = ∅.
Let θ denote the weights of the “whole” neural network

being trained. The objective of the federated learning process
is to determine the optimal parameterization of the weights,
denoted as θ∗, that performs well on the virtually merged
dataset D by minimizing the loss function L(θ):

θ∗ = argmin
θ

{L(θ) = 1

N

N−1∑
i=0

ℓ(θ,Di)} (1)

Here, ℓ(θ,Di) represents the loss incurred by θ on the local
dataset Di, defined as:

ℓ(θ,Di) =
1

|Di|
∑

(x,y)∈Di

ℓ(y, f(x; θ)) (2)

Original Neural Network

subnet0

subnet1

subnet2

Fig. 1. Extracting multiple subnetworks for K = 3; hidden neurons with
the same color belong to the same subnetwork. The input and output neurons
(white) are common across all subnetworks.

where f(x; θ) denotes the model’s output as parametrized by
θ on input sample x.

Under the vanilla federated learning training regime, op-
timization of the model weights occur through the iterative
collaboration of participants as orchestrated by the central
server. In the opportunistic setting, collaboration is made
possible by encounters that vary from node-to-node as a
consequence of their dynamic movement across different ge-
ographic locations and evolving interactions with other nodes
and the environment. A direct adaptation of vanilla federated
learning, in effect, leads to divergent models. Hence, we
adopt an alternative methodology that combines independent
subnetwork training and sequential federated learning.

B. Generating Independent Subnetworks

Given a neural network with L hidden layers, for l ∈
{1, 2, ..., L}, nl denotes the number of neurons in each of
its hidden layers. Similarly, the dimensions of its input and
output layers are denoted as n0 and nL+1, respectively. Before
actual training commences, the neural network is first divided
into K nonoverlapping subnetworks. This process, shown in
Fig. 1, entails iterating through each of its hidden layers
and randomly splitting the hidden neurons into K distinct
groups. For k ∈ {0, 1, ...,K − 1}, the hidden neurons of
the kth subnetwork is formed by collecting the kth group at
each hidden layer. Consequently, the weight associated with
the connection between two neurons p and q in the original
neural network is activated in a subnetwork if and only if both
neurons are contained in its neuron set. This non-overlapping
partitioning scheme ensures that all neurons undergo training,
while avoiding concurrent updates on the same neuron across
different subnetworks. As a consequence, subnetwork updates
can be integrated into the original network in a straightforward
fashion. All subnetworks incorporate all neurons from the
input and output layers of the original network, allowing them
to function autonomously as independent models.

C. Sequential Training of Independent Subnetworks

At the onset of the training process, each node is assigned a
unique subnetwork and a copy of the original network, which



we also refer to as its full model. Note that the full model is
not exchanged at any time during the training process. It is
only used by a node to accumulate trained subnetworks from
other nodes that it encounters. By default, we set K = N to
ensure unique subnetwork assignments. However, in practical
implementation, we allow K to vary to explore alternative
scenarios. For example, when K < N , complete participa-
tion of the nodes in the training process leads to redundant
subnetworks, necessitating additional aggregation strategies.
Ultimately, when K = 1, the federated learning scenario aligns
with the model-homogeneous case, where all nodes update all
parameters of the original network collectively.

The proposed approach is an attempt to achieve parallel
training progress and conflict-free aggregation by combining
independent subnetworks with sequential federated learning
[9]. For simplicity of exposition, we assume that the training
phase is divided into T discrete time steps. At each time step
t ∈ {0, 1, ..., T−1} training progress is achieved through each
node performing local updates on its assigned subnetwork for
E iterations. Let θ̂ti,e denote the weights of the subnetwork
assigned to node i after e ∈ {0, 1, ..., E} local steps in the tth

time step. Using Stochastic Gradient Descent (SGD) as the
local optimizer, subnetwork weights are updated as follows:

θ̂ti,e+1 = θ̂ti,e − η∇ℓ(θ̂ti,e,Di) (3)

where ∇ℓ(θ̂ti,e,Di) refers to the gradient of the loss of the
current subnetwork parameters on the local dataset Di and η
is the learning rate. The final updated weights for the current
time step θ̂ti,E are then integrated into the node’s full model.

Nodes utilize opportunistic encounters to exchange models,
aiming to advance training of each subnetwork and incorporate
additional subnetworks into their full model. Let N t

i denote
the neighborhood of node ci at time t. Here, we assume
neighbor relationships are symmetric, such that ∀ci, cj ∈ C :
cj ∈ N t

i ⇐⇒ ci ∈ N t
j . Consider the scenario shown in

Fig. 2 where at time t = 1, c2 only has c1 as its neighbor.
After model exchange, at time t = 2, c2 takes custody of
c1’s subnetwork, and vice versa, such that θ̂22,0 = θ̂11,E and
θ̂21,0 = θ̂12,E . Local training is then conducted using the newly
received subnetworks. We refer to such an exchange as a
reassignment exchange. When |N t

i | = 0, ci does not update
its subnetwork to prevent overfitting to its local dataset.

In cases where |N t
i | > 1, ci may engage in additional model

exchanges that do not alter its assigned subnetwork. We refer
to these exchanges as accumulative exchanges. Although the
latter type of exchange enables nodes to incorporate more
subnetworks into their full models and improve its perfor-
mance in the interim, it does not impact the final accuracy that
can be achieved by collecting all subnetworks after they have
been trained. Therefore, decisions regarding the distribution of
subnetworks to all nodes may be deferred until certain training
termination criteria, such as maximum training times, are met,
at which point existing store-carry-and-forward algorithms
[17] can be employed to facilitate delivery of subnetworks
beyond direct encounters. This final distribution step does not

c1

subnet2

t=2

c0 c1 c2

c2c0

subnet0subnet1

subnet0 subnet1 subnet2

t=1

Fig. 2. Subnetwork exchange and sequential training: Nodes train assigned
subnetworks and exchange them on encounter. Highlight: the movement of
subnetwork 0 from c0 to c1 at t = 1 and from c1 to c2 at t = 2.

incur additional storage cost, as nodes can simply use their
full models as buffer.

D. Computational Requirements

Given a fully connected neural network, the number of
parameters is derived by taking the sum of the products of
the widths of its consecutive layers as shown in (4).

L+1∑
l=1

nl−1nl (4)

In contrast, the number of parameters in each independent
subnetwork is computed using (5).

1

K
(n0n1 + nLnL+1 +

L∑
l=2

nl−1nl

K
) (5)

With the reduced number of parameters, the computational
requirements for training the model as well as the bandwidth
requirements for exchanging subnetworks among participating
nodes are also reduced.

IV. EXPERIMENTS

We extend the FedML [10] library to develop a discrete
event simulator to characterize the performance of the pro-
posed approach. The simulation is organized into discrete time
steps during which nodes (1) update assigned subnetworks,
(2) exchange subnetworks with neighbors, and (3) update
local full models. Additionally, node connections are refreshed
each time step to reflect the dynamic nature of opportunistic
networks.

Our evaluations focus on the performance of the system
under both IID (Independent and Identically Distributed) and
Non-IID scenarios. At each time step, we compute the accu-
racy of each node’s local full model against a separate univer-
sal test set. In addition, we track the performance evolution of
each subnetwork as it is exposed to different local datasets.
We also assess the performance of a hypothetical oracle
model, constructed by integrating the most recent versions
of each subnetwork into the original neural network. While
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Fig. 3. Using pre-trained backbones as feature extractor.
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Fig. 4. Images of different damage classes in the MEDIC dataset.

it is unlikely to recover all subnetworks at each time step in
the opportunistic setting, the oracle model’s performance helps
us assess whether improvements in the accuracy of local full
models stem from local training of subnetworks or integration
of additional subnetworks from encountered nodes.

A. Dataset and Distributions

Three different datasets are used: MNIST, CIFAR-10, and
MEDIC. The first two are well-known benchmark datasets
used for testing machine learning algorithms. On the other
hand, MEDIC [18] consists of 71, 198 images for training
machine learning models in disaster response tasks. The
images, gathered from social media and the Internet, vary
in quality and resolution. For the disaster damage severity
task, each image is labeled with one of three classes (little
or none, mild, severe) as shown in Fig. 4. We use MNIST and
CIFAR-10 to gain a general understanding of the behavior
of the proposed approach and MEDIC for the more practical
scenario of transfer learning, where pre-trained backbones are
used as feature extractors in conjunction with the proposed
approach to classify damage severity in disaster scene images.
The datasets are divided into N = 100 nodes in the federation.
We use concentration parameter α = 0.5 when generating the
Non-IID local datasets using Dirichlet sampling.

B. Network Architectures

In our experiments, we used two variants of fully connected
networks: 1L5K and 2L5K. Both architectures have 5000
hidden neurons; however, 1L5K has 1 hidden layer, whereas
2L5K has 2 hidden layers. Each hidden layer is followed by
a batch normalization layer. Depending on the dataset, the
neuron counts of the input and output layers are adjusted; for
example, in the case of CIFAR-10, the dimensions of the input
and output layers are 3072 and 10, respectively. These models

are used to generate K = 100 subnets. In the transfer learning
case, the model is preceded by pre-trained ResNet101 and
DenseNet121 models that extract feature representations of an
input image in parallel [19]. The resulting network architecture
implemented using Pytorch is shown in Fig. 3. The weights
of these pre-trained models are frozen, which allows feature
representations for each image to be computed only once.
Nodes perform 1 round of training using SGD as optimizer
with a batch size of 32 and a learning rate η set to 0.01.

C. Node Connections
Dynamic connections among nodes are bidirectional and

established using two methods: random pairing and the ran-
dom waypoint model (RWP). In random pairing, the nodes are
randomly split into two groups and connections are formed
between two nodes chosen from each set. While the resulting
topology may not mirror real-world scenarios, it serves as a
useful baseline, emphasizing specific properties of the training
process (as discussed in Section V). In the RWP, nodes start at
random locations, move toward a selected destination within
a specified speed range (assumed to be [0.5, 1.5] m/s, corre-
sponding to pedestrian walking speeds), pause upon reaching
their destination for a random duration, then resume movement
to a new destination. Connection links form when nodes are
within each other’s communication range (50 meters). RWP
connection traces are generated using the ONE Simulator
[20] by configuring road networks covering increasing areas
(500m2, 1000m2, and 2000m2) centered on Ikoma City Hall
in Nara, Japan as shown in Fig. 5.

D. Experimental Setups
Our experimental design comprises three main groups as

summarized in Table I. The initial experiments aim to un-
cover the fundamental training characteristics of the proposed
approach, while the subsequent set investigates the impact of
pre-trained backbones, offering insights into its applicability
in real-world scenarios where feature extractors are prevalent.
In the final phase of experimentation, we apply the proposed
approach alongside pre-trained backbones across three dif-
ferent real-world map sizes, comparing its performance with
the model-homogeneous approach, which relies on model
averaging for aggregation. The sizes of models transmitted
are 601.367 KB and 58.68 MB, respectively. Each experiment
is replicated three times and executed on an RTX 3080 GPU.



TABLE I
EXPERIMENTAL SETUPS

Setup Dataset Architecture Topology Source Steps Distribution Subnetworks with Pre-trained Backbone

I MNIST, CIFAR-10 1L5K, 2L5K RP 100 IID, NON-IID 100 False
II CIFAR-10, MEDIC 1L5K RP 100 IID, NON-IID 100 True
III MEDIC 1L5K RWP 500 NON-IID 100, 1 True

Fig. 5. Portion of Ikoma City, Nara, Japan used for the simulation

V. RESULTS AND DISCUSSIONS

In this section, we present the results of our experiments
and discuss their implications. We start by summarizing key
metrics across different conditions, and then analyze them to
draw important insights.

A. Results of Experimental Setup I

Table II summarizes the results of the first set of experi-
ments on training neural networks from scratch. Fig. 6 shows
the evolution of the average test accuracy across all nodes,
examining both the IID and Non-IID cases for the MNIST
dataset. It reveals a consistent upward trend in accuracy,
indicating the progressive refinement of the full model’s per-
formance. A notable divergence in accuracy is evident between
the IID and Non-IID scenarios, emphasizing the influence of
dataset distribution on model learning. The inclusion of an
additional layer in the neural network architecture appears
to initially impede accuracy gain during the early stages of
training. However, as training progresses, the deeper network
exceeds the performance of its shallower counterpart.

The accuracy of each node’s full model is influenced by the
sequential training of the subnetworks and the integration of
other subnetworks received through node encounters. To gain
deeper insights into the impact of these factors, we analyze
the trends in average test accuracy in conjunction with the
oracle model accuracy (see Fig. 7). On examination, it is
evident that following the initial round of training on the
1L5K model, the oracle accuracy quickly climbs to 84.14%
and 61.6% for the IID and Non-IID cases, respectively. This

observation indicates that in the case of simpler datasets like
MNIST, where subnetworks are able to capture patterns within
data quickly, nodes can improve full model performance by
incorporating subnetworks from other nodes early.

Finally, we turn our attention to the evolution of an in-
dependent subnetwork’s accuracy as it transitions from one
local dataset to another. Fig. 8 illustrates the test accuracy for
a single subnetwork as it is continuously trained on different
partitions of the MNIST dataset. We excluded the remaining
subnetworks for brevity and because the overarching trend
remains consistent. When the local datasets are IID, the
subnetwork, despite its limited capacity, exhibits relatively
good performance, achieving an accuracy of 71.82% after
the first training round, which increases to 90.99% over the
course of 100 time steps. On the other hand, in scenarios
characterised by Non-IID datasets, the performance (40.88%)
of the subnetwork is markedly inferior after the first round
of training. This is expected due to the disparity between
the sample distributions in each local dataset and that of the
virtually merged dataset. Nevertheless, as the subnetwork is
exposed to a variety of datasets, its accuracy steadily improves,
ultimately reaching a final accuracy of 70.45%. This result
suggests that in both the IID and Non-IID scenarios, exposure
to diverse local datasets enhances subnetworks’ generalization.
We observed similar behavior when training on the CIFAR-10
dataset, albeit with lower results.

TABLE II
SUMMARY OF RESULTS FOR SETUP I

Architecture ACC MNIST CIFAR-10

IID NON-IID IID NON-IID

2L5K Oracle 0.9250 0.7780 0.3930 0.3679
Ave 0.9071 0.6810 0.3695 0.3168

1L5K Oracle 0.9152 0.7487 0.4090 0.3965
Ave 0.9050 0.7186 0.3906 0.3661

TABLE III
SUMMARY OF RESULTS FOR SETUP II

Architecture ACC CIFAR-10 MEDIC

IID NON-IID IID NON-IID

1L5K Oracle 0.9043 0.9050 0.7506 0.7167
Ave 0.8996 0.8919 0.7421 0.6948

B. Results of Experimental Setup II
Table III summarizes the result of the second set of exper-

iments where we consider transfer learning scenarios. Given
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Fig. 6. Mean test accuracy on the MNIST dataset.
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Fig. 7. Oracle test accuracy on the MNIST dataset.

the more complex nature of real-world datasets and the chal-
lenging environment our approach is intended for, leveraging
pre-trained backbones as feature extractors is preferred over
training convolutional layers from scratch. Fig. 9 shows the
test accuracy for both the CIFAR-10 and MEDIC datasets. We
see the learning task simplifying effect of feature extractors
elevating the final accuracy for the CIFAR-10 from 39.05%
and 36.60% (see Table II) to 89.96% and 89.19% for the IID
and Non-IID cases, respectively. In the MEDIC dataset, the
corresponding results are 74.21% and 69.48%, respectively.

Considering the fewer target classes in MEDIC’s disaster
damage severity classification task, one might question why it
exhibits lower accuracy compared to CIFAR-10. However, this
difference can be attributed to various factors. Firstly, unlike
CIFAR-10, the input images in MEDIC are more complex.
Secondly, while severe damage may be more readily dis-
cernible in images, the distinction between little or none and
mild-level damage presents a significant hurdle. These align
with findings in [18], where the authors reported a maximum
accuracy of 82.8% in the centralized training setting.

C. Results of Experimental Setup III

Table IV presents the findings from the third and final
set of experiments, focusing on the MEDIC damage severity
classification task in a more realistic scenario where node
connections are governed by the RWP mobility pattern. Fig. 10
and 11 show the corresponding test and oracle accuracy. The
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Fig. 8. Test accuracy for subnetwork 0 on the MNIST dataset.
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Fig. 9. Mean test accuracy on CIFAR-10 and MEDIC with feature extractors.

result show that the performance of the proposed approach
translates into the more realistic setting despite the biasing
effect that road network configurations impose on node en-
counters (compared to open space). In the smallest simulation
area, the final test accuracy reaches 68.86%, which is lower
than the results we found in the previous experiments where
connections are guaranteed at each time step. However, this
is supported by a final oracle accuracy of 72.00% indicating
that additional accuracy may be achieved by distributing the
trained subnetworks beyond directly reachable nodes.

As the simulation area increases, we observe a slower
growth in test accuracy. This is expected since an increase
in area corresponds to a lower likelihood of node encounters.
However, we notice that the oracle accuracy does not suffer as
much performance degradation indicating that overall training
progress is robust to the clustering of nodes in different areas.

Finally, we contrast the proposed approach with a model-

TABLE IV
SUMMARY OF RESULTS FOR SETUP III

K ACC AREA

5002 10002 20002

100 Oracle 0.7200 0.7244 0.7088
Ave 0.6886 0.6439 0.5617

1 Oracle 0.6940 0.6556 0.6722
Ave 0.6356 0.6098 0.5855
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Fig. 10. Mean test accuracy, K=1 vs. K=100 using real-world map
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Fig. 11. Oracle test accuracy, K=1 vs. K=100 using real-world map

homogeneous approach by setting the number of subnetworks
K = 1. Upon examining the results across all simulation
areas, we observe that allowing nodes to train all parameters of
the neural network initially yields higher test accuracy. How-
ever, as time progresses, the partial and independent training-
based approach gradually outperforms the former. This can
be attributed to model divergence, as shown by the oracle
performance depicted in Fig. 11. We observe that at certain
times, especially in smaller simulation area, aggregating all
models result in a model with significantly reduced accuracy,
showing catastrophic interference.

VI. CONCLUSION

In this study, we proposed a new approach to training
neural networks in opportunistic scenarios. By leveraging the
conflict-free nature of IST and combining it with SFL, we
achieve a training framework that effectively reinstates the
notion of a global model without the need for a central
server or costly consensus protocols. It is worth noting that
its performance in training from scratch on Non-IID data has
room for improvement. Looking ahead, we plan to explore the
integration of continual learning approaches to enable better
retention of previously acquired knowledge from past nodes.
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