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Abstract—Regulating human flow is essential to reducing
congestion in areas where people gather. A digital twin that real-
istically simulates human flow helps for this purpose. To realize a
realistic human flow simulation mechanism, it is essential to take
into account people’s attributes. However, existing simulation
methods use only location-specific information to predict people’s
behavior, thus do not reflect the routines that appear in people’s
actual lives. In this paper, we propose a human flow simulation
using synthetic population data that help extract the attributes
of people living in a target area. In the proposed method, we
simulate the movement of people with each attribute like office
workers, students, etc. every 15 minutes using the synthetic
population data and the hourly transition probability matrix
between PoIs (Points of Interest) by computing the transition
probability matrix from hourly PoI-level congestion (people
count) in the target area using people trajectory data included
in the point-type fluid population data commercially available
and applying a Markov chain to the congestion. The proposed
simulation mechanism is based on the data assimilation of the
actual PoI congestion vector (how many people were staying in
each PoI) obtained from the point-type fluid population data and
the virtual PoI congestion vector generated from the prediction
of people’s movement using the attribute information in the
synthetic population data at regular time intervals. The data are
assimilated at regular intervals to obtain highly accurate PoI-level
congestion forecasts. The results of the mobility simulation for
office workers showed that the maximum cosine similarity with
the actual PoI congestion was 0.96 after 12 hours even when the
actual PoI congestion vector is known only for a part of the area
(one mesh).

Index Terms—Human flow simulation, synthetic population
data, PoI congestion, digital twin

I. INTRODUCTION

In recent years, tourist destinations in Japan have been
overflowing with tourists from both Japan and abroad, and
over-tourism has been cited as a serious problem. In addition
to sightseeing spots, crowding occurs in various areas due to
unbalanced human flows. Changing people’s behavior from
crowded places to less-crowded places is necessary to solve
congestion. In order to get people to change their behavior,
it is too late to do so after congestion has occurred, and it
is necessary to guide people appropriately in anticipation of
congestion.

In order to properly regulate the flow of people, it is
necessary to predict the future flow of people and the con-
gestion at each location. Therefore, it is necessary to develop

a technology for sensing information on the number of people
visiting and staying at each point of interest (PoI) and a
technology for predicting the number of people in the future
based on the current number of people staying at each PoI.
Matsuda et al. [1] proposed a system that uses BLE to sense
the number of people staying at each PoI, such as public
transportation facilities and restaurants. Yamada et al. [2] pre-
dicted the number of people staying at each location from GPS
trajectory data by performing four processes: outlier removal,
mesh identification, stay detection and PoI identification, and
data formatting. These forecasts are based on location-specific
information such as congestion and GPS, and do not reflect the
routines of actual people’s lives because all people are treated
identically.

Addressing this problem, in this paper, we propose a novel
simulation mechanism to accurately predict the congestion of
all future PoIs using people flow simulation with their attribute
information and data assimilation with the actual PoI-level
congestion data. As attribute information, we use synthetic
population data that can provide information on the pseudo-
residence and occupation of people living in the target area
created by Murata et al. [3] based on the results of the census.

This simulation mechanism is based on the data assimilation
of the actual PoI congestion vector (how many people were
staying in each PoI) obtained by using the point-type fluid
population data (commercially available) generated from the
location information obtained by the smartphone application
and the virtual PoI congestion vector generated from the
prediction of people’s movement based on the attribute in-
formation of the synthetic population data at regular time
intervals. The data are assimilated at regular time intervals
to obtain highly accurate PoI-level congestion forecasts. More
specifically, the proposed assimilation mechanism consists of
the following five steps. In Step 1, the movement of people
is considered as a stochastic transition between PoIs, and a
Markov chain that predicts the next PoI from the current PoI
is applied to obtain the probability of movement between PoIs
and the transition probability matrix at each time point. In
Step 2, a virtual PoI congestion vector at the beginning of the
simulation is calculated by simulating the predicted movement
of people generated from synthetic population data. In step 3,
the transition probability matrix is repeatedly applied to each



person in the virtual PoI congestion vector at time t, and the
virtual PoI congestion at the next time period t+1 is calculated
in n ways. This is repeated until time t+ k. In step 4, among
the nk virtual PoI congestion vectors at time t+ k, select m
vectors that are closest to the actual PoI congestion vector
at the same time. Finally, in step 5, steps 2 through 4 are
applied repeatedly to each of the m PoI congestion vectors.
In this study, the unit time is 15 minutes, k = 4, n = 10, and
m = 3, respectively.

The proposed method was applied to simulate the movement
of people in Chofu City, Tokyo, from 6:00 a.m. to 6:00
p.m. The results showed that the maximum Cosine similarity
between the predicted and actual PoI congestion vectors was
0.961. Therefore, we believe that the method of extracting the
Top3 vectors every 15 minutes using different PoI transition
probabilities for each attribute is an effective method for
predicting the movement of people. Even when the actual PoI
congestion vector is known only for a part of the area (one
mesh), a cosine similarity of 0.96 is obtained between the
prediction and the actual PoI congestion vector.

II. RELATED WORK

A. Estimation of urban congestion

There are several approaches for estimating crowd conges-
tion in urban areas, including image processing approaches
using cameras and measurement approaches using Bluetooth
and sensors on smartphones [4]–[8]. In addition, a method
to measure crowd density based on information from inertial
sensors mounted on tablets has been proposed in recent years
[9]. These approaches are suitable for estimating the flow of
people in a specific narrow area where devices are installed.
Still, it is not suitable for predicting the behavior of crowds
in the entire city, which is the target of this study, because the
flow of people in areas where cameras are not installed cannot
be estimated.

In addition, there are approaches using WiFi access points
and BLE for estimating congestion in public transportation
facilities such as buses and trains, public facilities, restaurants,
and other indoor locations [1], [10]–[12]. However, these
methods are also effective within a limited area, such as a
train or restaurant, but difficult to obtain information over a
large area.

B. Crowd Congestion Prediction

In the field of crowd behavior prediction, similar to conges-
tion estimation, prediction methods using sensors have been
proposed. Sato et al. showed a method for predicting the flow
of people at an event venue by capturing the characteristics
of their behavior using data acquired by various sensors [13].
Such a method, however, is not suitable for predicting the
behavior of crowds in the entire city, which is the target of
this study. Crowd behavior is determined by various factors.
Many deep learning and machine learning methods have
been proposed to capture these factors [14]. Deep learning
and machine learning methods use two types of features for
prediction: spatial and temporal. Zang et al. proposed a method

called Double-Encoder, which models the correlation between
spatial and temporal features and daily movements [14]. This
method focuses on the fact that each region has the same
daily flow due to the regular living patterns of its citizens
and that several regions share similar flow patterns and are
correlated with each other. They constructed two encoders
to capture the spatio-temporal dependence and correlation
of daily flows, respectively, built the model, and conducted
extensive experiments using two real-world datasets. As a
result, the proposed model showed significant advantages over
existing methods for predicting inflows and outflows. These
studies predict future crowd behavior based on past behavioral
information. However, human movements are influenced by
the characteristics of a city, so past behavior alone is not
enough.

C. Behavior prediction using PoI

In crowd forecasting, a forecasting method using informa-
tion on PoIs (Points of Interest), which correspond to locations
closely related to human behavior, has been proposed as a
spatial feature. Wang et al. propose a method for predicting
population outflow/inflow in a region using only the number
and categories of PoI and also consider the motives that cause
people to move and the number of people moving for each
cause [15]. Jiang et al. focus on the relationship between
human behavior and PoI information and propose a prediction
method that combines CNN and LSTM using human trajectory
data and urban PoI data as inputs [16]. The forecast area is
divided into meshes, and the PoI information for each mesh is
used as input data for spatial features using CNN convolution.
Targeting cities with limited data, they use transfer learning,
in which learning in one city is transferred to another city so
that a more powerful model can be built by using data from
other cities. Their method outperforms the baseline method,
especially when training data is limited.

D. Research on Digital Twin

Digital twin refers to a technology to reproduce various data
collected from the real world on a computer and was first
proposed by NASA [17]. The digital twin in the industrial field
can be used for simulation and operation to make predictions
and tests from learning models before actual production, etc.,
and has been proposed for remote monitoring and streamlining
of factory operations [18]. In recent years, the technology has
been used in urban digital twin projects around the world,
such as the digital prototype of the city of Herrenberg in Ger-
many [19], the digital twin project of the Tokyo Metropolitan
Government, and the digital twin construction of the city of
Singapol [20]. Much of the current urban digital twin research
is simulation-based for disaster simulation and urban planning
[21], [22]. The digital twin in these studies does not necessarily
require the use of real-time data but rather the estimation of
daylight conditions using 3D digital twin data or the estimation
of disaster conditions. Therefore, how to utilize data such as
real-world congestion data for human flow simulation and how



to reflect such data in the digital twin is not considered, as is
the case in this study.

E. Positioning of this research

In existing research, much research has been conducted
on predicting behavior in limited areas with a narrow scope
for congestion estimation and people flow simulation and
on building learning models to improve the accuracy of
such predictions. In most cases, only past information on
people’s behavior and congestion data are used to predict the
behavior of crowds, and future behavior prediction based on
this information has been the norm. In this case, behavior
forecasting does not take into account the attribute status of
people. Therefore, the simulation does not reflect the routines
of daily activities of many adults and students, such as going
to work or school in the morning and returning home in the
evening or at night, which are observed for each attribute.

In this study, we address the estimation of future PoI
congestion that can consider local circumstances and social
conditions. We have performed simulations considering at-
tribute information under the assumption that the actual PoI-
level congestion for the entire target area is known. However,
it is not realistic to know the actual PoI-level congestion for
the entire area of interest. Therefore, in this study, we try to
realize a more versatile human flow simulation mechanism
and tackle the problem of forecasting when only PoI-level
congestion only in a part of the target area is known as a new
problem.

III. PROBLEM DESCRIPTION

This section provides an overview of the human flow
simulation mechanism using PoI transition probabilities and
synthetic population data. The objective is to predict future
congestion conditions of all PoIs from a realistic human flow
simulation mechanism.

A. Assumptions

We put the following three assumptions required to devise
a realistic human flow simulation method.

1) Knowing the past congestion of all PoIs
2) Knowing the current congestion status of some PoIs
3) Knowing the attributes of people in the target area

B. Obtaining real congestion data

We suppose that the following technologies are available to
obtain past and current congestion at all PoIs.

1) Congestion sensing at PoIs: We suppose to use existing
congestion sensing systems that acquire real-time PoI conges-
tion vector in transit vehicles, public facilities, and restaurants
such as BLECE [1] which is an inexpensive congestion sensing
system using Bluetooth Low Energy (BLE).

2) Congestion calculation using PoI congestion vector: To
obtain the number of people staying at each PoI, we can use
the method developed by Yamada et al. [2]. This method is
used to create data on the number of people staying at each PoI
by searching for the PoI nearest to the location information of
the staying PoI when dividing the GPS trajectory data of each
person in the “Point-type Current Population Data” provided
by Agoop Inc. into moving segments and staying segments.
In this study, this data is used as real congestion data.

C. Acquisition of each person’s attribute information

Synthetic population data [3] is used to obtain attribute
information on people in the target area. The synthetic pop-
ulation data is the data compiled by using national statis-
tics, prefectural statistics, municipal statistics, town and street
statistics, and basic unit district statistics from the national
census conducted every five years. By using this data, it is
possible to obtain information on the attributes of people living
in the target area.

D. Problem to be solved by proposed method

In this study, we aim to construct a more realistic human
flow simulation method that combines data obtained from a
congestion sensing system and PoI congestion vector with
attribute information obtained from synthetic population data,
in order to understand future congestion in all PoIs, and to
predict future congestion levels more accurately. The goal
is to minimize the difference between the predicted future
congestion and the actual congestion in each PoI of the target
area as much as possible. We propose a method consisting of
the following three steps.

1) Using historical real PoI-level congestion data, deter-
mine the transition probability matrix between PoIs.

2) Simulating peoples’ movements by their attributes ex-
tracted from the synthetic population data.

3) Assimilating actual congestion data and simulated con-
gestion data.

IV. SIMULATION METHOD OF HUMAN FLOW MOVEMENT
CONSIDERING ATTRIBUTE INFORMATION

In this section, we propose a method for predicting fu-
ture PoI congestion in a target area by applying the three
approaches described in the previous chapter. In this paper,
we assume Chofu City, Tokyo, Japan as the target area. Tabel
I shows information for Chofu City. The tertiary mesh here is
one of the regional meshes that divide the area into meshes of
approximately the same size based on latitude and longitude
for statistical use, and the size of a mesh is 1000m × 1000m.
We used this tertiary mesh as information on the location of a
person at a certain point in time, and the location of the person
at a certain time was used as the location of the person.

A. Definition of Attribute Information

In applying the proposed approach, we categorized the
people living in Chofu City into three types of attributes based
on synthetic population data: “office worker,” “student,” and



TABLE I
CHOFU CITY

population 242,917 persons
area 21.53 km2

GridCode3 37

“other” who stay at home. The definitions of all attributes are
shown in Table II.

TABLE II
DEFINITION OF ATTRIBUTE INFORMATION

Number of people 88,000
worker classification Use of ”Age” and ”Occupation” infor-

mation
movement Movement based on inter-PoI transi-

tion probabilities
Number of people 55,000

student classification Use of ”age” and demographic infor-
mation

movement moved to a school location in the city
Number of people 63,000

Other classification Use ”age” and ”household” informa-
tion

movement Stay at the location

B. Calculation of PoI-to-PoI transition probability matrix

Markov chains are generally used in the problem of pre-
dicting the next destination in the trajectory of a person’s
movement. Assuming that a person’s movement is a stochastic
transition between PoIs, we applied a Markov chain to predict
the next PoI. Here, the probability of moving between PoIs
and the transition probability matrix are obtained by applying
a Markov chain to real congestion data for all past PoIs.

We generate the probability matrix Mt,t+∆ from the con-
gestion at time t and at time t+∆, the pair of two times at a
PoI. Denoting Pt as the vector of real congestion for all PoIs
at time t, this matrix Mt,t+∆ can be expressed as a Markov
chain of the following formula.

Pt+∆ = Pt ·Mt,t+∆ (1)

We obtain the congestion information (number of people
staying at each time) at each PoI, called real PoI congestion
vector hreafter, by generating a trajectory of each person’s
behavior based on the PoI congestion vector. Then, at 0, 15,
30, and 45 minutes of every hour, a judgment is made as to
whether the person is moving or staying, and if the judgment
is that the person is staying, the number of people staying
at each location at each time is calculated by assigning PoI
information to that location.

The PoI information given here is based on the addition of
“Move,” “Home,” and “Uncategorized” to the major industry
category of Agoop Corporation’s PoI data for Tokyo, and the
details are shown in Table III.

C. Overview of Simulation Mechanisms

The transition probability matrices obtained in Sect. IV-B
are used to simulate the movement of 88,000 workers in Chofu

TABLE III
LARGE CATEGORIES OF POI

Traffic, Transportation, Warehousing
Automobiles, Motorcycles, Bicycles, Driving

restaurant
Sales, wholesale

Sports, Hobbies, Leisure
Medical, Pharmaceutical, Health Care

Government, Organization, Welfare
Travel, Sightseeing, hot springs, Ryokan, Hotels

Schools, Libraries
Finance, insurance, securities

Manufacturing, processing
Construction, Engineering

Real Estate, Leasing, Exhibition Space
Agriculture, Fisheries, Mining

Electricity, gas, telecommunications, broadcasting, newspapers
Publishing, Printing

Other Services
Unclassified

Move
Home

City from 6:00 a.m. to 6:00 p.m. The steps of the simulation
are as follows.

Step 1 Calculate a virtual PoI congestion vector at the start
of the simulation.

Step 2 For each person in the virtual PoI congestion vector
at time t, the transition probability matrix is applied
iteratively to compute the n possible virtual PoI
congestion at the next time period t + 1, and the
process is repeated until time t+ k.

Step 3 Among the nk virtual PoI congestion vectors at time
t + k, select m vectors closest to the actual PoI
congestion vector.

Step 4 Repeat steps 2 to 4.
Figure 1 shows an overview of this simulation. First,

assuming that most workers are at home in the morning,
we set 6:00 a.m. as the starting time of the simulation,
so we obtained information on the residences of all people
based on the town and street information in the synthetic
population data and assigned “Home” as PoI congestion vector
according to the assignment rule described above. Each person
has information that combines location information and PoI
information (e.g., 111111111-Home) and is placed at the initial
location with reference to this location information. Then, PoI-
to-PoI transition probabilities were applied to all of the initial
locations, one by one, to obtain the new PoI congestion vector
for each person after 15 minutes. This new PoI information is
the new position of each person 15 minutes after moving from
the initial position. The transition probabilities are applied to
each person one by one in order to produce variations in where
people move to for each simulation. The transition probability
matrix between PoIs is used as the basis for determining
whether or not each person moves and where they move.
Ten movement patterns are created every 15 minutes for one
placement (n = 10). This is repeated four times to create
10,000 movement patterns in one hour (k = 4). Compare this
result with the actual PoI congestion vector and extract the



Fig. 1. Overview of Simulation

three with the highest cosine similarity (m = 3). Using these
initial values of people and their movement transitions, the
proposed method simulates their movements every 15 minutes
from 6:00, set as the start time, to 18:00, set as the end time.

D. Hourly Cosine Similarity Comparison Method

For every k time unit (e.g., 60 minutes when k = 4), cosine
similarity is calculated between the real PoI congestion vector
obtained in Sect. IV-B and 10,000 different patterns of the
virtual PoI congestion vectors obtained from the simulation
in Sect. IV-C. Here, each vector is in the form of location
information plus PoI information and contains 740 elements.
Then, the three virtual PoI congestion vectors with the highest
similarities are selected and used as the base for the next one-
hour simulation (see Fig. 1).

V. RESULTS OF EXPERIMENTAL EVALUATION OF
MOVEMENT SIMULATION

A. Experiment 1: Congestion prediction in the case when PoI
congestion vector for all meshes is known

1) Outline of Experiment: Experiment 1 was conducted to
check the accuracy of the proposed method’s travel simula-
tion under the condition that real-time congestion data (PoI
congestion vector) for all meshes in the target area (Chofu
City) are known. Two comparison methods, the local search
and the bottom selection method, were used to determine the
effectiveness of the proposed method. Each evaluation method
is as follows.

Local Search Method: In this method, the initial positions
of all people are set the same as in the proposed method. For
the first transition (first 15 minutes), 10,000 simulations were
performed, generating 10,000 different virtual PoI congestion
vectors. After that, instead of applying transition probabilities

to each person one by one as in the proposed method,
transition probabilities were applied directly to each of 10,000
PoI congestion vectors every 15 minutes, thus updating 10,000
vectors until 18:00 every 15 minutes.

Bottom Selection Mthod: Contrary to the proposed method,
this method selects m virtual PoI congestion vectors with the
lowest cosine similarities (m = 3 is used in this experiment).
This method is used to give a rough lower limit of the cosine
similarity.

2) Results of experiments: The results of the cosine simi-
larity for each method at different times of the day are shown
in Table reftable:res. starting at 6:00, the cosine similarity
gradually increased, reaching a maximum of 0.961 at 18:00.

In the local search method, similarly to the proposed
method, there was a gradual improvement in the cosine
similarity until 18:00, and the maximum cosine similarity at
18:00 was 0.919. The proposed method outperforms the local
search method at all times until 18:00. In the case of the
bottom selection method, the cosine similarity decreases with
time, reaching 0.804 at 18:00. These results indicate that the
proposed method is more effective than the local search and
that the proposed method may decrease the cosine similarity
to 0.804 in the worst case.

3) Discussion: We calculated the mean absolute percent
error (MAPE) per mesh between the predicted PoI congestion
vector and the actual. The results of the top and worst five
meshes are shown in Table V and Table VI, respectively. All
meshes in Chofu City are shown in Figure 2.

The meshes with large MAPE in Table VI are characterized
by the fact that there are actual samples in the Point-type
Current Population Data (by Agoop Inc.) in those meshes
due to the fact that they border with other cities and have
forests. On the other hand, the meshes with low MAPE



TABLE IV
COSINE SIMILARITY FOR EACH TIME PERIOD

6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
0.920 0.948 0.966 0.965 0.976 0.985 0.983 0.984 0.976 0.965 0.959 0.961

Proposed Method Top 3 0.920 0.947 0.966 0.965 0.976 0.985 0.981 0.981 0.964 0.961 0.939 0.945
0.920 0.947 0.966 0.964 0.975 0.985 0.979 0.981 0.974 0.961 0.941 0.940

Local average 0.893 0.908 0.914 0.920 0.929 0.924 0.934 0.930 0.915 0.923 0.916 0.894
Search Top 0.921 0.947 0.957 0.962 0.969 0.971 0.975 0.966 0.954 0.941 0.926 0.919

0.920 0.941 0.937 0.937 0.894 0.849 0.841 0.842 0.834 0.831 0.826 0.821
Bottom Bottom 3 0.920 0.941 0.937 0.937 0.894 0.848 0.847 0.837 0.832 0.832 0.816 0.819

0.920 0.941 0.936 0.936 0.893 0.847 0.844 0.832 0.830 0.827 0.816 0.804

©OpenStreetMap contributors

Fig. 2. Chofu City Mesh ID

(high prediction accuracy) in Table V are characterized by the
presence of a large number of actual samples and the presence
of popular places where many people gather, such as stations,
shopping centers, and residential areas.

TABLE V
MAPE FOR TOP 5 MESHES

meshID %
53393487 0.1
53393494 0.5
11111111 1.5
53393485 1.5
53393483 1.8

TABLE VI
MAPE FOR WORST 5 MESHES

meshID %
53393471 30.2
53394405 28.9
53394412 27.4
53394465 27.1
53394407 23.5

The results of Experiment 1 as a whole show that it is pos-
sible to predict people’s movements based on synthetic popu-
lation data that includes information on people’s attributes and
places of residence. The proposed method selects the top three
cosine similarity vectors every hour, and people’s movements

are explored from those three vectors. When 10,000 random
movement patterns are calculated (Local Search Method), the
maximum cosine similarity value becomes 0.919, while the
proposed method achieves 0.961, which is 0.04 higher than
the Local Search Method. Therefore, we consider the proposed
method to have some merits.

Furthermore, the large MAPE difference between meshes
indicates that the proposed method may be able to make
predictions even when the congestion vector for only a specific
mesh is available.

B. Experiment 2: Congestion prediction when only some
meshes’ PoI congestion vector is known.

1) Outline of Experiment: Experiment 2 was conducted to
see how well the proposed method can predict the PoI-level
congestion when only some meshes’ real PoI congestion vec-
tors are available. Specifically, we selected three characteristic
meshes in Chofu City and conducted simulations when one
of the meshes’ information was known and when two of the
meshes’ information was known.

The three meshes selected this time are 53393483,
53393485, and 53393492 (Figure 2, and a description of each
mesh is shown in Table VII. The meshes will be denoted as
Mdowntown, Mhousing, and Mstadium, respectively.

TABLE VII
OVERVIEW OF SELECTED MESH IDS

mesh explanation
Mdowntown 53393483 Urban area with Chofu Station,

which has the highest number of
passengers in Chofu City, and
shopping centers.

Mhousing 53393485 Residential area with two sta-
tions, Shibasaki and Tsutsuji-
gaoka, in the same mesh.

Mstadium 53393492 The Ajinomoto Stadium occupies
1/4 of the mesh, and there are
several other sports facilities such
as sports grounds.

In addition to this, simulations were also performed for the
case where two meshes Mdowntown and Mhousing are known.

2) Results of Experiment:
Case1: One mesh’s congestion information is known: The

results of each simulation, when only one PoI congestion
vector of the three selected meshes is known, are shown
in Table VIII. The maximum cosine similarity when only
Mdowntown’s congestion information is known is 0.943 at 18:00,
which is only 0.02 less than 0.961 at 18:00 when congestion



TABLE VIII
COSINE SIMILARITY FOR CASES KNOWING ONLY A SPECIFIC MESH

6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00
Mdowntown 0.921 0.923 0.942 0.946 0.951 0.959 0.953 0.957 0.941 0.927 0.946 0.943
Mhousing 0.984 0.972 0.993 0.963 0.968 0.965 0.951 0.952 0.961 0.967 0.954 0.949
Mstadium 0.792 0.890 0.806 0.863 0.803 0.792 0.872 0.871 0.864 0.860 0.858 0.852
2 meshes 0.920 0.955 0.959 0.977 0.974 0.974 0.975 0.981 0.969 0.958 0.949 0.954

All 0.920 0.948 0.966 0.965 0.976 0.985 0.983 0.984 0.976 0.965 0.959 0.961

information from all meshes is used. When only Mhousing’s
congestion information is known, the maximum cosine sim-
ilarity is 0.949 at 18:00, which is only 0.01 lower than the
value at 18:00 when the information of all meshes is known.
Compared to the previous Mdowntown, the difference between
the simulation results and the actual congestion prediction
results is large at the beginning of the simulation, but the
prediction accuracy gradually improves after 8:00. Next, when
only Mstadium’s congestion information is known, the maximum
cosine similarity is 0.852 at 18:00, which is 0.11 lower than
that of all meshes case at 18:00. The result was significantly
lower than that of the two meshes (Mdowntown and Mhousing).

Case2: Two meshes’ congestion information is known:
Next, we describe the simulation results when the congestion
vector for two meshes is known. For this simulation, we
selected Mdowntown and Mhousing, which gave the best simu-
lation results when one mesh ID was known. We performed
simulations using only the congestion information of these
two meshes. The results are shown in Table VIII, with a
cosine similarity of 0.954 at 18:00. This result is higher than
that obtained individually for each mesh ID, Mdowntown and
Mhousing.

Next, the simulation results are plotted on a scatter plot at
two-hour intervals, as shown in Figures 3 to 8. At 8:00, two
hours after the start of the simulation, the divergence between
the simulation results and the actual data was the largest, but
it began to converge with the passage of time.

3) Discussion: The results of Experiment 2 show that real-
time congestion data (PoI congestion vector) can be used
to predict future PoI-level congestion by simulation, even
with a limited number of mesh IDs in the target area. The
high prediction accuracy of Mdowntown and Mhousing, which
have many samples and PoIs, indicates that future congestion
prediction is possible even with only some data if real-time
congestion data (PoI congestion vector) is known for key
locations where people gather, such as residential areas and
the center of an area.

The prediction accuracy using real-time congestion data
from two meshes was higher than that using only one mesh,
and the difference in maximum cosine similarity was only
0.01 compared to when all meshes’ real-time congestion data
was known, suggesting that it is possible to predict the future
congestion with sufficiently high accuracy using only some
data.

VI. CONCLUSION

In this paper, we proposed a realistic human flow simulation
mechanism using transition probabilities between PoIs and

synthetic population data for Chofu City, Tokyo, Japan. Using
real-world residential information from the synthetic popula-
tion data as the initial people’s locations in the simulation
and applying transition probabilities every 15 minutes obtained
from the actual PoI congestion vector (calculated with Point-
type Current Population Data provided by Agoop Inc.), we
found that the proposed method could achieve the maximum
cosine similarity at 18:00, 12 hours later of approximately
0.961, indicating that it is possible to predict people movement
with high accuracy. In addition, when the congestion informa-
tion is known only for one or two meshes, the simulation
results were good enough.

The data used in this study is biased toward some categories
of PoI where people are staying, such as “Home” and “Move,”
and the accuracy of the simulation may not always be accu-
rately reflected in the simulation results. In the future, we aim
to build a more accurate simulation mechanism by adopting a
smaller mesh size.

We are currently simulating up to 30,000 movement patterns
for a one-hour simulation, but we aim to build a more versatile
simulation mechanism by learning and scoring the model. We
also aim to build a realistic simulation of human flow and
estimate future congestion in all PoIs, which will serve as a
basis for creating a digital twin of human flow.
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