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Abstract—To achieve smart cities, leveraging data from cam-
eras, which are often readily-installed IoT devices, can offer
precious insights on the behavior of pedestrians and play a
crucial role in designing and maintaining efficient transportation,
appropriate infrastructure, or attractive tourism facilities. Such
pedestrian flow data collection is often achieved through cross-
camera person re-identification. This task is heavily privacy-
invasive task by design, benefiting from rich visual data, which
thus carries highly sensitive personal details about individuals.
We here study how image data can be protected upfront, and
introduce a novel image differential privacy mechanism lever-
aging both pixelization and color quantization for this purpose.
Our extensive experiments show that through its random noise
additions, our mechanism can obfuscate data more effectively
than standard image obfuscation methods while retaining high
utility for cross-camera re-identification, preserving reasonable
re-identification metrics and demographic information even un-
der low privacy budgets.

Index Terms—smart cities, image differential privacy, person
re-identification, demographic predictions, anonymization

I. INTRODUCTION

Cities keep growing, creating logistic challenges in terms
of traffic management, city planning, and tourism. Access to
comprehensive data regarding human flows within a city would
help mitigate these issues, and such data can be collected
through cameras, due to their prevalent presence within our
lives, making them prime candidates for smart city applica-
tions. In this context, cross-camera person re-identification has
been extensively studied over the past decades [1], as the
computer vision task of matching individuals from different
camera perspectives. Despite promising applications in secu-
rity, planning, or tourism areas, little concern has been paid to
the glaring privacy concerns this raises and, thus, the public
acceptance of such systems.

To address these concerns, this study investigates the possi-
bility of protecting stored image representations of individuals
against sporadic data breaches. Assuming a CCTV-based re-
identification system operating within a smart city, where each
camera stores and transmits a large amount of sensitive visual
pedestrian images, is it possible to store these images in such
a way that they are of minimal value to attackers, yet still
retain utility for their intended purpose, in case of a data leak
at an arbitrary point in the system’s operation?

To answer this question, we examine whether cross-camera
person re-identification data can be protected through dif-

ferential privacy [2], a formal data privacy model which
characterizes the privacy loss that results from having one’s
data published. This privacy loss, or budget, can be affected
and decreased through random data distortions, which data
aggregators can define according to their privacy requirements.

This ability to quantify and control the privacy leakage of
smart systems is key to their social acceptance, which requires
building trustful relationships with citizens, customers, or
individuals at large. Extending differential privacy guarantees
to images is expected to move forward towards this goal.

Our contributions are as follows:
• We formulate a new strict image differential privacy

mechanism leveraging both pixelization and color quan-
tization, which significantly reduces data sensitivity and
allows for lower privacy budgets.

• We extensively evaluate its effect on the public Mar-
ket1501 dataset, in terms of re-identification perfor-
mances, gender classification ability and visual image
quality, and identify privacy-utility trade-off points.

• We highlight the robustness of centroid-based re-
identification models against differentially private noise.

• We show our differential privacy mechanism is able to
provide a quantifiable privacy guarantee by reducing gen-
eral utility and visual quality of images, while preserving
reasonable re-identification performances.

II. RELATED WORK

This section briefly overviews existing studies on person
re-identification and differential privacy.

A. Cross-camera person re-identification (reID)

The recognition of individuals across different visual snap-
shots from different points of view has become a traditional
computer vision task over the last 20 years [1]. It is usually
formalized as an image-retrieval task, where the aim is to
train a model on a training set such that it can rank images
from the gallery set in order of their similarity to a given
image from the query set. Recent state-of-the-art reID systems
achieve maximum performances on traditional datasets such
as Market1501 [3] by combining the now conventional CNN
feature extractors [4] and triplet loss [5] with a variety of other
techniques [6], e.g., by aggregating information from multiple
person images to increase model robustness to outliers [7].



Privacy-preserving re-identification has also been explored,
mostly by substituting the classic RGB camera with less
privacy-invasive sensors, such as continuous-wave radars [8],
event cameras [9], or LiDARs [10]. Other approaches apply
classic anonymization methods to reID data, such as face blur-
ring [11]. Some studies have focused on anonymizing visual
data, e.g., by replacing pedestrians with synthetic objects [12]
or wireframe representations [13], but do not evaluate the
usability of protected data for practical computer vision tasks.
Privacy based on cryptographic data encryption [14] and
federated learning [15] has also been considered in the context
of person re-identification. To our best knowledge, the effect
of applying formal differential privacy directly to image data
collected from RGB cameras on reID performances has not
yet been studied.

B. Differential privacy (DP)

Over the last decade, differential privacy [2] has become one
of the most popular ways of modeling formal data privacy, due
to its ability to provide quantifiable protection against arbitrary
risks, with implementations by, e.g., Google, Apple, Microsoft,
the U.S. Census Bureau and SAP. By perturbing computations
over statistical databases, it promises indistinguishability be-
tween data records and plausible deniability to every individual
composing such databases, providing them with roughly the
same privacy that would result from having their data removed.

Recent work regarding differential privacy has aimed at
extending its desirable properties to other forms of data. With
unstructured data making up most of today’s data landscape,
a line of work focused on image differential privacy has also
emerged, with studies leveraging pixelization [16], singular
value decomposition [17], data streams [18], or generative
models [19], [20]. As noted in a recent survey on differential
privacy for unstructured data [21], the common approach is to
vectorize unstructured data into a structured form, which can
then be obfuscated with conventional DP methods.

These past studies have focused on analyzing the effect of
differential privacy mechanisms on adverse attacks [16], [17],
[20], on the visual quality of output images [18], [19], or on
their similarity to the unprotected images [16], [17], [19], [20],
but usually provide limited insights regarding the concrete
usability of differentially private image data for practical
computer vision tasks. We here study how such data can
be used specifically for person re-identification under strict
differential privacy conditions, without assuming the size of
sensitive areas in images [16] nor the image sensitivity based
on empirical measures [19], and without producing outputs
similar to a given training set [19], [20].

III. METHOD

This section goes over the threat model we consider, the dif-
ferential privacy mechanism we propose, the re-identification
model we use, the way we evaluate gender predictions, and
the baseline methods we compare to.

A. Threat model

Cross-camera person re-identification is a task where rich
(and thus privacy-sensitive) data is collected in order to
produce outputs that are actually much less privacy-sensitive.
While the inputs to this task are a large number of image-
representations of individuals, its output can be viewed as
answering questions such as “is person x the same person
as person y?”. The answer to these questions is evidently still
privacy-sensitive information; however, given that x’s and y’s
image-representations are stored in such a way that they cannot
be linked to the individuals’ real-world visual appearance, this
has the system store much less private information overall.

In a smart city system operators may wish to collect
information such as the percentage of people that visit point B
shortly after point A. However, for their purposes, there is no
value in knowing whether this percentage includes a specific
visually recognizable individual. Therefore, if the input data
to the reID system can be distorted to be minimally useful
for other applications, the privacy footprint of the system
is reduced to what is strictly necessary to its operation. We
believe this further useful for the public release of image
datasets, which have been under scrutiny due to privacy con-
cerns, and believe differential privacy a promising approach to
strip datasets of sensitive information and restrict their fitness
for undesirable, unforeseen uses.

B. ε-Image Differential Privacy

To provide a quantifiable privacy guarantee on images, we
extend the grayscale pixel-level differential privacy defini-
tion first introduced as DP-Pix [16]. We further restrict its
definition; instead of providing indistinguishability between
grayscale same-sized images differing by at most m pixels,
we here aim for indistinguishability between RGB same-sized
images differing in any amount of pixels.

Definition 1. ε-Image Differential Privacy: a randomized
mechanism M gives ε-image differential privacy if for any
two images i and j of same dimension, and for any possible
output R ⊆ Range(M),

Pr[M(i) ∈ R] ≤ exp(ε) Pr[M(j) ∈ R] (1)

As shown in [2], the Laplace mechanism can achieve such
a guarantee, provided M is defined as the noisy function:

M(x) = f(x) + n, where n ∼ Laplace

(
0,

∆f

ε

)
(2)

The exact amount of noise n is to be calibrated to the
sensitivity ∆f of function f , which we define as the identity
function. Our broader image neighborhood definition, which
does not assume the size of the area containing private
information in images, leads to a much higher sensitivity than
existing image differential privacy mechanisms; this then calls
for more noise addition to achieve low privacy budgets ε.

To reduce the magnitude of this sensitivity value, we pro-
pose to use not only pixelization, but also color quantization
as a means to reduce the dimensionality of images prior to



differentially private noise addition. As such, we generalize
and extend the DP-Pix definition of function f ; instead of the
pixelization of grayscale image x, we define f as the identity
function applied to RGB image x, with optional pixelization
and color quantization parameters b and c. The sensitivity of
this function then becomes:

∆f =
wh

4b

(
28

2c
− 1

)3

(3)

where w and h are the width and height of images. The amount
of pixelization to be applied to images is defined through b,
such that 4b pixels are reduced to a single pixel. The range
of available color values in images is characterized through
c, where each color channel is reduced from its original 8
bits to (8 − c) bits. If b = 0 and c = 0, no pixelization nor
quantization is applied, and the sensitivity is equivalent to that
of the identity function.

By protecting image data upfront with a quantifiable privacy
guarantee in the form of a privacy budget ε, its vulnerability
can be mitigated. The re-identification system, or any other
unforeseen use of the images after applying ε-Image DP, is a
form of post-processing, which has no effect on the privacy
guarantee offered by the mechanism [2].

To thoroughly evaluate how dimensionality reduction pa-
rameters b and c affect privacy budgets ε and reID perfor-
mances, we here present results for 4 parameter combinations,
as introduced in Table I. Among the combinations we exper-
imented with, these parameters were chosen for their good
performances and ability to illustrate the importance of color
quantization in our mechanism. Privacy budgets ε were made
to vary between {1, 2.5, 5} × 10x, where x ∈ {0, ..., 12}.

TABLE I: Dimensionality reduction parameter settings. Sensi-
tivity ∆f is calculated for images with w = 64 and h = 128.

b c ∆f
(A) High color quantization 0 6 221,184
(B) Mixed pix. and color quant. 1 5 702,464
(C) High pixelization 2 4 1,728,000
(D) No pix. nor color quant. 0 0 135,834,624,000

C. Re-identification system

We opt for a simple but effective reID model in the form of
the now common Bag of Tricks (BOT) model [6], and increase
the robustness of this model against differentially private noise
by combining it with the centroid-based approach introduced
by Wieczorek et al [7]. By averaging training samples into
centroids, i.e., aggregated class representations, the task is
shifted from ranking specific identity-instances to classifying
into actual identities, which arguably also makes more sense
in practical applications. An illustration is provided in Fig. 1.

We expect the use of these averaged individual represen-
tations to be able to magnify identity-specific latent features
that remain underneath the noise. We test this hypothesis by
training and testing both regular and centroid-based models
directly onto noised images. Performances are reported in
terms of Mean Average Precision (mAP), the mean of the

query

(a) Regular reID model.
The query is wrongly assigned
to the nearest image’s identity.

query

centroid

centroid

(b) Centroid-based reID model.
The query is correctly assigned

to the nearest mean centroid
representation’s identity.

Fig. 1: Difference between regular and centroid reID models.

average precision score as evaluated for each image within
the query set, and Rank-1, the percentage of images from the
query set for which the gallery match predicted with highest
confidence is a true match. Experiments are repeated three
times and we report the average metric values.

In terms of dataset, we use Market1501 [3], perhaps the
most common and widely used public re-identification dataset,
which contains 32,668 pedestrian images from 1501 different
individuals collected across 6 cameras. Market1501 images are
composed of 64x128 RGB pixels (using 24 bits per pixel).
Train, gallery and query sets are kept consistent with the
standard splits for this dataset.

D. Gender predictions

To evaluate the effect of our privacy mechanism beyond
the reID task, we additionally consider its effect on gender
classification, a common attribute classification task. This
gives an idea of how feasible attribute extraction remains
after image DP-obfuscation, and can assist system operators in
choosing a suitable privacy budget ε. Market1501 is annotated
in terms of binary gender labels (male, female) [22]. Gender
classification is implemented as a simple fully connected layer
on top of a pretrained ResNet50v2 [4] backbone.

Performances are reported in terms of F1-scores as eval-
uated on the test set, composed of both the gallery and
the query sets. All experiments are repeated three times,
and we here report the average metric values. To present a
fairer comparison with the centroid-based reID model, which
leverages multiple image representations of the same identity,
we additionally report the classification F1-scores on a per-
identity basis, by aggregating all the predictions obtained
on the image representations of a given identity through a
majority vote, for each of the identities in the dataset.

E. Baselines

We compare our method to existing image obfuscation
methods illustrated in Fig. 2. Blurring is widely used as a
simple privacy-preserving method, and applies a Gaussian
kernel to modify each pixel based on neighboring pixels. We
here present results for blurring with kernel size k = 25.
Replacing faces with black boxes is also a common way to
increase privacy. We here do this using a CE2P human parsing
model [23] to segment images into 20 different areas, merge



those labeled as face, hair, hat and sunglasses, increase the
resulting area’s size to form a rectangular shape, and then zero
all pixels in this area. We also compare our results to simple
pixelization, with kernel size b = 2, and color quantization,
reducing color richness by a factor of c = 6.

Original Blur. (k=25) No face Pix. (b=2) Quant. (c=6)

Fig. 2: Visual effect of the considered baseline methods.

IV. RESULTS

In this section, we report reID and gender classification
performances on ε-Image DP-protected data, compare our
proposed method to existing baselines, and provide examples
of ε-Image DP-protected images.

A. ReID

Figure 3 shows the performance of both a regular and a
centroid-based reID model on Market1501 obfuscated through
ε-Image DP. For the sake of brevity, we only include this
comparison for the mixed pixelization & color quantization
parameter setting (B), as all other parameter settings exhibit
the same behavior. As one would expect, both mAP and Rank-
1 metrics degrade as the privacy budget ε decreases, i.e., as
privacy increases. It is however striking from our experiments
that centroid-based reID models (dark lines) offer much higher
robustness to noise than regular reID models (light lines).
Their observed reID performance after applying ε-Image DP
is sensibly higher and therefore can withstand lower privacy
budgets ε before performances degrade significantly.

Having confirmed that averaged individual representations
can help decrease privacy budgets for reID, we now discuss
and compare the effects of dimensionality reduction param-
eters b and c and privacy budget ε. Figure 4 shows the
performances of centroid-based reID models on Market1501
data noised with different sets of privacy parameters.

At a glance, it appears Market1501 suffers very little from
dimensionality reduction parameters b and c, with all four

102 103 104 105 106

privacy budget 

0.0
0.2
0.4
0.6
0.8
1.0

m
AP

%

w/ centroids
w/o centroids

102 103 104 105 106

privacy budget 

0.0
0.2
0.4
0.6
0.8
1.0

Ra
nk

-1
%

w/ centroids
w/o centroids

Fig. 3: ReID performances (mAP left, Rank-1 right) of
centroid-based (dark line) and regular (light line) models on
Market1501 after ε-Image DP, in parameter setting (B).

settings displaying similar behaviors when little noise is added
(right-hand sides of the graphs). The order of parameter sets in
which performances degrade to chance-level is directly related
to dimensionality reduction parameters b and c, with c seem-
ingly having the largest impact. Not using any dimensionality
reduction (red line, D) has performances degrade at much
higher privacy budgets ε than using either pixelization or color
quantization. High pixelization (green line, C) can decrease
privacy budgets while retaining good reID performances, but
not as much as high color quantization (blue line, A), which
can achieve privacy budgets as low as ε = 2500 despite
retaining a mAP > 90%.

This behavior is due to the lower sensitivity values ∆f of
parameter settings (A)-(C), as previously indicated in Table I.
This lower sensitivity is achieved by reducing the amount of
information in images prior to differentially private obfusca-
tion. Due to the nature of image data, raw images contain a lot
of redundancy, which pixelization and color quantization help
eliminate. The more noticeable effect of the latter is likely
inherent to the RGB color model, which defines many more
possible color values than appears to be necessary for reID
models to distinguish people.

It is also quite apparent that there exists a clear cutoff point
where reID goes from feasible to nearly chance-level. Consid-
ering pixel color channels have a very limited range of values
(256 for each channel), every pixel color channel is likely to
be forced into its minimum or maximum value at random the
instant the privacy budget becomes low enough, essentially
erasing all information within images. We mark these cut-
off points with ⋆ in Fig. 4, as the lowest privacy budgets ε
where centroid-reID performances are kept reasonably high,
and further discuss these in Section IV-C below.
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Fig. 4: ReID performances of centroid-based models on Market1501 after ε-Image DP.



B. Gender predictions

Using the same noised Market1501 images to perform
gender classification gives the results shown in Fig. 5. As with
reID, leveraging multiple image representations per identity
(dark lines) yields higher performances than using single
images (light lines). The x-values at which points are marked
with ⋆ are kept consistent with Fig. 4. At a glance, gender
performances appear to degrade around the same privacy
budgets ε as reID performances, but the usability drops more
gradually than for reID, with softer slopes around ⋆-marked
points. It is also interesting to observe that the effect of
dimensionality reduction alone, as shown in the right-hand
parts of each graph, which have very little added noise, is
nearly nonexistent, with all settings on both datasets displaying
very similar performance. This can be attributed to gender
classification being a simpler task overall, thus suffering less
from pixelization and color quantization.

C. Baseline comparison

Table II summarizes the cut-off points identified and marked
with ⋆ in Fig. 4 and Fig. 5 for our proposed method in each
parameter setting A-D. This table compares the behavior of our
models at these cutoff points on ε-Image DP-protected datasets
with state-of-the-art performances on an unprotected dataset,
and with normal reID and gender classification performances
on datasets obfuscated through traditional methods. To further
quantify the relationship between the original images and
their obfuscated counterparts, this table also reports the mean
Structural Similarity Index Measure (SSIM) [24], a common
measure for assessing the perceived similarity between images.
The larger this measure, computed between two images, the
more said images are visually similar; a good obfuscation
mechanism is expected to minimize this metric.

From Table II, it appears our method can generally achieve
reID metrics closer to SOTA than traditional obfuscation
methods, on top of providing a quantifiable privacy measure in
the form of a privacy budget ε, which traditional methods can
not. While replacing individual’s faces with black boxes does
achieve comparably high reID performance, it does not protect
any other private body features; this is confirmed by the high
associated SSIM value. It clearly appears our proposed method
achieves lower SSIM values than all the other baselines, thus

introducing more distortion, all the while preserving similar
or better reID and gender classification performances.

D. Visual image quality

Figure 6 illustrates our proposed mechanism with an ex-
ample image from the Market1501 dataset. Images at the
cut-off points discussed above are lined in red. As can be
observed, both the dimensionality reduction (pixelization &
color quantization) as well as the actual noising mechanism
affect the output image. A higher level of pixelization appears
to suffer more rapidly from a decreasing privacy budget ε, thus
requiring less Laplacian noise to obfuscate identity-specific
attributes (e.g., face), at least on a visual level, while a higher
level of color quantization seems to streamline color regions,
making them more robust against low privacy budgets ε. This
aligns with our results in Section IV.

While the images at the selected cutoff points bear some
form of resemblance to the original, it is hard to make
out much details of the person’s appearance. As such, the
selected comparison points appear like good trade-off points
between low general-purpose visual quality and reasonable
reID performances. Visually, the mixed setting (B), strikes
us as perhaps the best trade-off, sacrificing performance to
an extent that makes images hardly recognizable yet still
reasonably useful for person re-identification. When compared
to the images obfuscated using traditional methods, as in
Fig. 2, our proposed method appears to achieve a more thor-
ough obfuscation, erasing more high-level details of peoples’
appearances.

TABLE II: Comparison of our proposed method (A-D) on
Market1501 with SOTA and traditional obfuscation baselines.
Best values are highlighted in bold.

reID Gender
Parameters Privacy ε mAP Rank-1 F1 SSIM
SOTA [7] none 98.3% 98.0%
Blurring (k=25) none 71.5% 87.3% 82.8% 0.469
No face none 82.1% 92.4% 85.1% 0.914
Pix. (b=2) none 67.6% 85.2% 83.2% 0.661
Quant. (c=6) none 71.3% 87.4% 84.4% 0.785
(A) b=0, c=6 2500 90.5% 88.6% 85.6% 0.220
(B) b=1, c=5 10000 77.2% 73.3% 79.2% 0.232
(C) b=2, c=4 50000 72.7% 68.3% 83.5% 0.330
(D) b=0, c=0 109 84.9% 82.1% 79.5% 0.144
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Fig. 5: Gender classification performances on Market1501 after ε-Image DP, per-identity (dark line) and per-image (light line).
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Fig. 6: Visual effect of image differential privacy on an
example images from Market1501. Images obtained at the
cutoff points selected in Table II are lined with a red frame.

V. CONCLUSION

Cameras are one of the most promising sensors for achiev-
ing IoT-enabled smart cities, but exploiting their data in large-
scale projects raises legitimate privacy concerns. To address
these, we introduce a novel, strict pixel-level image differential
privacy mechanism, which allows smart city system operators
to store pedestrian image data with quantifiable privacy guar-
antees. We show that by applying our privacy mechanism, one
can significantly reduce the visual quality of an image dataset
and limit the personal information it holds, thus lessening
the gravity of potential data leaks. Despite this obfuscation,
we identify sensible privacy-utility trade-off points where the
images can still reasonably be used for person re-identification
through centroid-based models, which we have shown to
exhibit high robustness to differentially private noise addition.
We expect these results to be useful for building privacy-
compliant camera-based pedestrian flow information systems
in smart cities, able to link together highly noised person
representations without compromising pedestrians’ privacy.
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