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Abstract—Mental health has a huge impact on humans, af-
fecting both psychological and physical well-being. Excessive
stress can lead to depression, reduced productivity, and even
suicidal tendencies. Stress also impacts appetite and sleep qual-
ity, potentially leading to other health issues. However, stress
accumulation often goes unnoticed until it severely impacts
health, highlighting the need for daily stress level assessment.
This study aims to estimate daily distress levels through natural
conversations with a smart speaker. We utilize the audio-visual
data of users interacting with a smart speaker on a daily basis,
extract features from different modalities through analysis, and
predict distress changes in daily life using questionnaire responses
as labels. In the experiment, participants interacted with a
smart speaker placed in their bedrooms, simulating daily life.
Webcam recordings captured facial expressions, voice, and heart
rate data, which were preprocessed for analysis. Predictions for
happiness, depression, and anxiety levels were made using data
from questionnaires filled out after each recording session, with
scores ranging from 0 to 18. Results from the 14-day experiment
with seven participants, aged 22 to 24, revealed MAEs of 2.04,
2.59, and 2.31 for happiness, depression, and anxiety levels,
respectively. The corresponding RMSEs were 2.63, 3.20, and 2.91.

Index Terms—distress, happiness, anxiety, depression, audio-
visual, heart rate, multimodality, smart speaker

I. INTRODUCTION

In recent years, there has been a significant shift in work-
places towards remote work, with approximately 12.7% of
full-time employees working from home and 28.2% adopt-
ing hybrid models by 2023. In Tokyo, Japan, over half of
businesses have embraced remote work, continuing for three
consecutive years, with rates over 50% by the end of 2022.
While indoor work environments reduce physical health risks,
concerns about psychological well-being, including stress and
depression, have grown. Unlike physical ailments, psycholog-
ical distress develops gradually and is challenging to detect
early on. Early prevention and intervention are crucial, this
study aims to track changes in users’ daily indicators of emo-
tional distress, thus helping them keep abreast of their mental
state. We intend to utilize facial expressions, voice, and heart
rate data to measure the intensity of happiness, depression,
and anxiety experienced by participants. In terms of data
collection, the experimental setup is built in the participants’
home to ensure their comfort. In the context of contemporary
living, smart speakers have become ubiquitous in households,

providing essential daily information and proving invaluable
for health. The interactions with these devices, initiated by
the users and typically brief, are adaptable across various age
groups. Therefore, we used the smart speaker as a key tool
in the experimental design, utilizing it to capture and analyze
communication patterns with participants.

Many studies have analyzed distress levels using open
datasets [1], but most of these datasets do not conform to
realistic scenarios. In this experiment, we collected video data
of 7 participants interacting with a smart speaker over 14 days.
From these video data, we extracted three types of features:
facial expressions, voice, and heart rate. We then used Random
Forest Regression Model and LightGBM Regression Model
to predict the changes in the levels of Happiness, Depres-
sion, and Anxiety. The label values were derived from the
Depression and Anxiety Mood Scale (DAMS) questionnaires,
which participants filled out after each recording session. Each
emotion has a label value ranging from O to 18. The best
MAE from leave-one-day-out cross-validation achieved for
Happiness, Depression, and Anxiety were 2.04, 2.59, and 2.31,
respectively, while the corresponding RMSE values were 2.63,
3.20, and 2.91. With this system, people do not need to collect
data in unfamiliar environments or wear cumbersome sensors
deliberately. They can obtain their daily distress variations in
their familiar homes in a manner that conforms to realistic
scenarios.

II. RELATED WORK

Many studies have used different methods to improve ac-
curacy in predicting the categories of emotions such as stress,
anxiety, and happiness. Considering the following experiment
procedure and model training, we categorize these diverse
studies based on three distinct focal points for discussion. In
Section II-A and Section II-B, we list some of the studies
focusing on the utilization of audio-visual data to predict
emotions. Moving on to Section II-C, we explore how previous
studies obtained physiological signal information and how to
utilize its representations. In Section II-D, we summarize the
problems in these related works and explore suitable research
approaches.



A. Emotion Recognition Using Visual Data

Facial cues are frequently employed to assess emotion and
stress levels, given their capacity to communicate subtle non-
verbal signals. The scrutiny of visual data enriches emotional
evaluation, bolstering its thoroughness and precision, thus
serving as a crucial asset in psychological investigations.

Soleymani et al. utilized the MAHNOB-HCI database,
employed face tracker technology to detect landmarks from
features, and achieved the highest accuracy on the LSTM
model [2]. In another work, Duncan et al. used their custom-
trained VGG-S network with a face-detector and Haar-Cascade
filter provided by OpenCV to implement real-time facial emo-
tion recognition [3]. They choose the extended Cohn-Kanade
dataset (CK+) [4] and Japanese Female Facial Expression
(JAFFE) database [5], analyzing the six common expressions
(anger, fear, neutral, happy, sad, surprise). The overall training
accuracy and test accuracy are 90.9% and 57.1%, respectively.

B. Emotion Recognition Using Audio Data

Audio, much like facial expressions, plays a crucial role
in emotion and stress level analysis due to its capacity to
convey subtle verbal and non-verbal nuances. For example,
Spectrogram [6] visually represents the timbre, pitch, and
rhythm of a voice and transforms audio signals into visual
data, revealing patterns and intricacies in spoken language that
are key to identifying emotional states.

C. Emotion Recognition Using Physiological Signal

Alongside facial expressions and audio signals, physiolog-
ical indicators such as heart rate variability (HRV) and elec-
trocardiogram (ECG) patterns play a vital role in forecasting
emotional categories or indices. These metrics offer insights
into the body’s reactions to different emotional states and their
impact on overall health and wellness.

To analyze physiological signals obtained from various de-
vices or sensors, Santamaria-Granados et al. employed a deep
learning approach using a DCNN [7]. Their study focused on
a dataset of physiological signals, specifically the AMIGOS
dataset. The detection of emotions in their study is achieved
by correlating these physiological signals with the arousal and
valence data from this dataset, aiming to classify the affective
state of a person accurately. Their model demonstrated an
impressive accuracy of 0.76 for Arousal, outperforming other
models such as MESAE, traditional DNN, and CNN.

D. Research Directions

Most of the studies mentioned earlier focus on emotions
indicators using audio-visual data and datasets produced in
controlled environments. Participants usually stay in a spec-
ified room where they watch certain videos or read scripted
speeches. However, this intentional setup for experiments may
not be aligned with realistic scenarios, as it might not represent
real-life situations accurately. Therefore, the following items
are the key points that we would like to emphasize in the
experiment of this study:

o Simple experimental conditions
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Fig. 1: Process of Data Analysis

o A familiar activity space for participants
« Short-time data collection
o Aligning with a realistic scenario

Regarding the solution of the items shown above, we
describe it in more detail in the proposed method.

III. PROPOSED METHOD

The purpose of this study is to enable individuals to monitor
changes in their distress levels. To achieve this, we intend to
create a system capable of collecting audio-visual data from
interactions between individuals and smart speakers in their
daily lives. The flowchart in Fig. 1 illustrates the process,
with the environment setup as well as data collection at the
top, data processing and feature extraction in the middle, and
computation of results using various machine learning models
at the bottom. We will explain each step in the following
subsections.

A. Assumed Environment and Data Collection

In this study, unlike most related studies, we chose a smart
speaker as the device to communicate with participants. We
set the recording location in the participants’ private rooms,
mainly because participants could express their emotions
more authentically at home. On the other hand, setting the
experiment location in the participants’ rooms reduces the
complexity of the experiment. In addition, smart speakers can
also provide essential daily information and hold significant
purposes in the domains of health and education [8]. The
interactions with these devices, initiated by the users and
typically brief, are adaptable across various age groups [9]. A
web camera was installed near the smart speaker to capture the
participants’ interactions, with each session lasting 40 seconds
to cover around two question-answer exchanges.
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B. Feature Extraction

In this subsection, we discuss the extraction of features
for different modal types (face expression, audio, heart rate)
respectively.

1) Face Expression Feature: For facial expressions, we
utilized the OpenFace toolkit [10], an open-source tool for
facial behavior analysis presented by Tadas Baltrusaitis et
al.. Tt is useful for computer vision, machine learning, and
affective computing. OpenFace specializes in facial landmark
detection, head pose estimation, facial action unit recognition,
and eye gaze estimation. This study focused on extracting
six eye gaze and 23 facial action unit features, such as inner
eyebrow raise and blinking, from a 40-second video clip. In
addition, we calculated the mean and standard deviation of
these 29 features.

2) Audio Feature: For audio features in video clips, we
utilized OpenSMILE, an open-source tool proposed by Flo-
rian Eyben er al, for extraction. We chose as a feature
set the extended Geneva Minimal Acoustic Parameter Set
(eGeMAPS) [11], which combines spectral parameters, tem-
poral features, frequency-dependent parameters, and more. It
contains a total of 88 parameters.

Because the webcam captures both the participant’s voice
and that of the smart speaker during recordings, our study
specifically requires the participant’s voice. We employed an
open technique by using Librosa, a Python package designed
for audio analysis, to separate vocals from accompanying
instrumentation. As shown in Fig. 2, there is a clear difference
between the audio waveforms of the human voice and the
smart speaker. The waveform of the latter is more regular,
with a frequency of no less than 100 Hz. Subsequently, we
deleted the segment containing the smart speaker’s voice.

3) Heart Rate: Unlike heartbeat extraction methods com-
monly used in related studies, such as skin-approach sensors or
smartwatches, we used a non-contact heart rate measurement
method, remote heart rate measurement (rPPG) [12]. Remote
heart rate assessment is more convenient for participants than

TABLE I: Heart Rate Features

Feature Dim Algorithm or Explanation
Heart rate sequence 9 heart rate sequence
Max & min 2 max,min(Heart rate sequence)
Heart rate range 1 max - min
Mean 1 Yo hri /n
Mean absolute deviation 1 Sy |hri — Mean| /n
Root mean square 1 \/ P hr?/n
Standard deviation 1 V2 (hr; — Mean)? /n
Coefficient of variation 1 Standard deviation / Mean
Relative increase; 8 hriy1 — hr;
Relative change; 8 hrit1 / hr;
Relative increase rate; 8 (hriy1 — hr;) / hr;
Directional change index; 8 14f hriy1 > hr; else 0

* n means the length of the heart rate sequence.
* hr; means heart rate in each window.
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wearing sensors for extended periods. For specific details,
we refer to the Eulerian video magnification (EVM) tech-
nique [13] for heart rate estimation, which is very effective for
non-contact, non-interference, and non-invasive monitoring.
EVM is typically applied to RGB video to amplify small
changes in skin color due to changes in blood flow to estimate
heart rate [14].

Considering that the rPPG tool we used can detect the
average heart rate throughout the video, we used the sliding
window method to detect the temporal dynamics of the center
rate signal of the 40-second video. As shown in Fig. 3, dividing
the video into multiple overlapping 8-second segments. With
this approach, we can analyze the temporal patterns and
fluctuations of the signal throughout the duration of the video.
After segmenting the video, we calculated different statistical
features such as standard deviation, root mean square, and
relative rate of increase from the heart rate values obtained
during these different time intervals. Table 1 shows a total of
49 different features, and Table I summarizes all the feature
sets.

C. Machine Learning Model

After extracting all the necessary features, we use two
regression models for training and comparison, taking into
account the presence and high dimensionality of multimodal
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features. These models include Random Forest Regression
(RFR) and Light Gradient Booster (LightGBM).

RFR typically exhibits good robustness to high-dimensional
data, can handle a large number of features, is not prone to
overfitting, and has good modeling capabilities for nonlin-
ear features. In addition, RFR can handle feature selection
problems, is insensitive to outliers, and usually shows good
generalization ability without extensive data preprocessing.
LightGBM is usually good at handling high-dimensional data
and nonlinear problems. It is a gradient-boosting tree method
and is insensitive to outliers.

Following this, depending on the model, we conduct cross-
validation with hyperparameter tuning in some of them to find
out the optimal result of each model in predicting the levels
of three different distress emotions.

IV. EXPERIMENT

A total of seven Japanese participated in the experiment.
The experiment was conducted in the participants’ respective
dormitories or homes. To ensure that the brightness of the
videos was not so dark that facial expressions and heart
rate features could not be detected, we asked participants to
maintain at least a certain level of brightness in the room
during the recording.

A. Device

We used a Raspberry Pi 4 microcomputer to install the
system. For the recording work, we used FFmpeg, a powerful
audio-video file recording tool available on Linux. We con-
ducted preliminary tests to verify the synchronization between
audio and video in the MP4 file. By using claps and flashes,
we determined that the audio was approximately 0.45 seconds
ahead of the video. Finally, we used itsoffset option in FFmpeg
to align them. After each recording, we utilize the PyDrive
library to automatically upload files to the cloud server. A
Long-Term Evolution (LTE) Dongle device is for providing
internet connectivity for file uploads. In terms of other devices,
we chose the Amazon Echo Dot smart speaker, C920n PRO
HD webcam, and installed a button as the start button for
recording, shown in Fig. 4.
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B. Questionnaire

We chose Depression and Anxiety Mood Scale
(DAMS) [15] as the questionnaire in the experiment, which
is specifically designed to assess the levels of happiness,
depression, and anxiety distress. There are three categories
of emotional words, each with three items, and each option
ranges from level O to level 6. Besides, we also asked the
subjects to wear a Fitbit watch to record physiological signals
during the experiment, the purpose of which was to check the
accuracy of heartbeat counts of our rPPG model by taking
the value of the Fitbit watch as the true value.

C. Schedule

Participants are actively engaged in conversations with the
smart speaker, ensuring a minimum of two interactions each
day. These interactions occur both in the morning, shortly
after waking up, and in the evening, just before bedtime.
The communication typically lasts 40 seconds, encompassing
two rounds of question-and-answer interactions. There are
no constraints imposed on the content or topics of these
interactions, making participants feel closer to their daily
lives. The process spans a duration of two weeks, and at
the conclusion of each conversation, participants are kindly
requested to complete the Depression and Anxiety Mood Scale
(DAMS) questionnaire.

V. RESULT

In this section, we compare the accuracy of our rPPG
model against the true values obtained from heart rate data
recorded by the Fitbit. Then delve into the comparison of
Random Forest Regression model and LightGBM Regres-
sion model in predicting happiness, depression, and anx-
iety levels. Model evaluation methods encompass 10-fold
cross-validation, Leave-One-Person-Out cross-validation, and
Leave-One-Day-Out cross-validation for each participant.

A. Accuracy of Heart Rate

In the proposed methodology mentioned above, we uti-
lize the EVM technique to implement rPPG to predict a
participant’s heart rate using the video data. To validate the
accuracy of this approach, we have chosen the heart rate data



TABLE II: MAE / RMSE of Random Forest model

Happiness Depression Anxiety
10-Fold CV | 2.30 / 2.83 | 2.85 /3.40 | 2.60 / 3.15
LOPOCV | 234 /287 | 2.71/3.36 | 2.98 / 3.67
LODO CV | 2.10/2.69 | 2.59 /3.20 | 2.43 / 2.97
TABLE III: MAE / RMSE of LightGBM model
Happiness Depression Anxiety
10-Fold CV | 2.26 / 2.84 | 2.97 / 3.565 | 2.70 / 3.34
LOPOCV | 2.61/3.24 | 2.85 /350 | 2.94 / 3.61
LODOCV | 2.04 /2.63 | 2.64 /328 | 2.31 /291

detected by the Fitbit AltaHR device worn by the participants.
This device periodically records heart rate data at intervals of
approximately 15 seconds. We utilized the Fitbit API to match
the recording time of the video, access the heart rate values
within that time frame, and calculate their average. Regarding
the assessment of accuracy, the MAE and RMSE were 7.77
and 9.83.

B. Prediction Results for Three Distress Levels

In this subsection, we analyze the predicted results for three
distress levels using the Random Forest Regression model and
the LightGBM Regression model. We also present the results
from three different cross-validation approaches.

Regarding the prediction results for Happiness, Depression,
and Anxiety, Table II and Table III display the (MAE / RMSE)
values from 10 loops of 10-Fold Cross Validation, Leave-One-
Person-Out Cross Validation and Leave-One-Day-Out Cross
Validation for both the Random Forest Regression model and
the LightGBM Regression model, respectively.

VI. DISCUSSION

Based on Table II and Table III, we can infer that the
accuracy of distress levels is ranked from highest to lowest
as follows: Happiness, Anxiety, and Depression. Additionally,
for each emotion level, the lowest MAE and RMSE are con-
sistently observed during leave-one-day-out cross-validation.
LightGBM performs better than Random Forest in terms of
both happiness and anxiety. However, accuracy still needs
to be enhanced. Here we first explore why LODO CV out-
performs the other cross-validation methods and compare the
performance of the two regression models. Subsequently, we
discuss the factors contributing to the overall model accuracy.

A. Subjective Differences in Participants’ Perceptions

The DAMS questionnaire employs simple adjective-based
questions, leading to greater variations in individual responses.
Fig. 6 and Fig. 7 depict distress level variations for two of the
participants in the LightGBM model’s LODO CV, considering
temporal changes.

Cross-validation methods such as 10-fold and LOPO CV
utilize data from multiple subjects in the training phase, mak-
ing it challenging to establish distinct scoring criteria for each
individual. However, LODO CV is trained on a single subject’s
data, often achieves higher accuracy. Observing Fig. 6 and

Fig. 7 above, we notice that despite the temporal perspective,
they can effectively capture the general trends and fluctuations
in distress levels.

B. Ablation

To understand the importance of different modalities, we
conducted an ablation analysis, where we calculated MAE and
RMSE by varying the combinations of facial expression, voice,
and heart rate. The results are shown in Table IV; we found
that for Happiness and Depression, the importance of different
modalities decreases in the order of Face expression, voice,
and heart rate, and for Anxiety, it is Face expression, heart
rate, and voice. However, despite training the model using only
the most important modality, combining all three modalities
still results in the lowest MAE and RMSE.

C. Comparison of Regression Models

In LODO CV, LightGBM Regression Model demonstrated a
higher incidence of lower MAE and RMSE than Random For-
est Regression Model. This superiority stems from some key
elements within the LightGBM framework. Firstly, LightGBM
presents a lower risk of overfitting due to its leaf-wise tree
growth strategy, which enables it to construct deeper and more
intricate trees efficiently. In contrast, Random Forest’s level-
wise tree growth approach may limit its ability to capture com-
plex patterns. Secondly, LightGBM incorporates automatic
feature selection, effectively identifying and prioritizing influ-
ential features in high-dimensional data, thus enhancing model
accuracy. Conversely, Random Forest often requires post-
hoc analysis to determine feature importance. Furthermore,
LightGBM offers superior scalability, particularly with large
datasets. Its efficient handling of high-dimensional data allows
it to process and analyze complex datasets with ease, further
contributing to its superior performance in cross-validation
experiments.

D. The Accuracy in Heart Rate Prediction

The accuracy of heart rate prediction using EVM was not
good, with an MAE of 7.77. The first reason is the lighting
conditions, some participants’ rooms tend to have significant
sunlight exposure in the morning, despite the curtains being
drawn. This results in inconsistent light intensities during
morning and evening video recordings, which could poten-
tially affect the accuracy of heart rate detection. The second
reason is the limitations of 2D CNN, EVM is a common
2D CNN tool for implementing rPPG. However, traditional
2D CNN approaches lack the capacity to grasp the temporal
contextual aspects of facial sequences. On the contrary, 3D
CNN [16] has the capability to simultaneously analyze both
the spatial and temporal attributes of videos, aligning well with
the characteristics of rPPG signals. This is advantageous for
remote heart rate measurement.

VII. CONCLUSION

In this study, we focused on enabling users to monitor
changes in their distress levels and proposed a multimodal



TABLE IV: Ablation

Modality Combinations | MAE / RMSE of Happiness | MAE / RMSE of Depression | MAE / RMSE of Anxiety
Face + Voice + Heartrate 2.04 / 2.63 2.59 / 3.20 2.31 /291
Face + Voice 2.14 / 2.79 2.73 /] 3.27 2.53 / 3.12
Face + Heartrate 2.29 / 2.87 2.78 / 3.31 2.49 / 3.09
Voice + Heartrate 2.27 / 2.84 2.85 / 3.40 2.66 / 3.23
Face 2.33 / 2.91 2.84 / 3.40 2.62 / 3.24
Voice 2.76 / 2.95 2.88 / 3.48 2.76 / 3.39
Heartrate 2.83 / 3.01 2.95 / 3.58 2.68 / 3.27
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approach that utilizes imagery, audio signal, and heart rate data
to estimate the levels of Happiness, Depression, and Anxiety.
The data for this approach was collected from interactions
between individuals and smart speakers. We evaluated the
performance of different machine learning regression models
and explored the reasons behind their results. The results show
that MAE and RMSE were lowest with LODO CV. When
performing the aggregation of scatter plots for prediction
results from all subjects, Happiness and Anxiety achieved
better results with LightGBM, with MAE of 2.04 and 2.31
and RMSE of 2.63 and 2.91, respectively. For future work, we
plan to extend the duration of experiments with participants
to gather additional data may mitigate the risk of overfitting.
Furthermore, investigating alternative rPPG tools to enhance
heart rate calculation precision stands as another avenue for
future research.
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